详细记录  
题名: Effects of S-nitrosation on hemoglobin-induced microvascular damage.
作者:Burke TK, Teng X, Patel RP, Baldwin AL.
来源:Antioxid Redox Signal. 2006 Jul-Aug;8(7-8):1093-101.
URL :http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16910757&query_hl=36&itool=pubmed_docsum
日期:061030
摘要:Program of Biomedical Engineering, University of Arizona, Tucson, 85724, USA.


Abstract
Blood substitutes, such as diaspirin cross-linked hemoglobin (Hb), cause microvascular leakiness to macromolecules. Because of the potentially stabilizing effects of nitric acid (NO) on endothelium, experiments were performed to determine whether S-nitrosohemoglobin (SNO-Hb), a potential NO-donor Hb-based blood substitute, would not cause microvascular damage. Release of NO, or its metabolites, from the SNO-Hb was facilitated by addition of glutathione, which aids in the decomposition of S-nitrosothiols. In anesthetized rats, the mesenteric microvasculature was perfused with SNO-Hb with glutathione (six rats), SNO-Hb alone (six rats), or saline (eight rats) for 10 min, followed by fluorescein isothiocyanate (FITC)-albumin for 1 min, and finally fixed for epifluorescence microscopic examination. When comparing the SNO-Hb group with saline, both the numbers and areas of leaks were significantly increased [0.019 +/- 0.003 (SEM) microm vs. 0.0030 +/- 0.0004 and 7.36 +/- 1.50 vs. 0.156 +/- 0.035 (p < 0.005)]. With the addition of glutathione, leakage was still high (0.005 +/- 0.00005 microm and 5.086 +/- 0.064 microm) but decreased compared with SNO-Hb alone (p < 0.005). In conclusion, NO, or a related vasodilator, when released from SNO-Hb, significantly reduces but does not eliminate microvascular damage. Further improvements may result by S-nitrosating a more stable form of modified hemoglobin.

================  评  论  部  分=================

重要性:
分类:(参照 Faculty of 1000 的分类体系)


评语:

评论密码:   返回前页  [全部]