详细记录  
题名:Membrane "Lens" Effect: Focusing the Formation of Reactive Nitrogen Oxides from the (*)NO/O(2) Reaction.
作者:Moller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JR Jr, Denicola A.
来源:Chem Res Toxicol[IF=3.339]. 2007 Mar 28;
URL :http://dx.doi.org/10.1021/tx700010h
日期:070415
摘要: Matias N. M?ller, Qian Li, Dario A. Vitturi, John M. Robinson, Jack R. Lancaster, Jr., and Ana Denicola*

Laboratorio de Fisicoqumica Biolgica, Facultad de Ciencias, and Center for Free Radical and Biomedical Research, Universidad de la Repblica, Montevideo 11400, Uruguay, and Departments of Anesthesiology, Physiology & Biophysics, and Environmental Health Sciences, Center for Free Radical Biology, the University of Alabama at Birmingham, Birmingham, Alabama 35294

Received January 9, 2007

Abstract

It was previously observed that lipid membranes accelerate NO disappearance (Liu et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 2175), and here, we demonstrate that this translates into increased rates of NO2 production and nitrosative chemistry. Not only the phospholipid membranes but also the atherosclerosis-related low-density lipoprotein (LDL) were able to accelerate the formation of NO2, studied by stopped-flow spectrophotometry using ABTS as a probe. In addition, membranes, LDL, and Triton X-100 micelles significantly accelerated S-nitrosation of glutathione and captopril. It is shown here that autoxidation of NO occurs 30 times more rapidly within the hydrophobic interior of these particles than in an equal volume of water, approximately 1 order of magnitude less than previous reports. This acceleration can be explained by the ~3 times higher solubility of NO and O2 into these hydrophobic phases relative to water, which results in a higher local concentration of reactants ("lens effect") and, therefore, a higher rate of reaction. It is predicted that 50% of the oxidizing and nitrosating species derived from NO autoxidation in cells will be formed in the small volume comprising cellular membranes (3% of the total); thus, biomolecules near the membranes will be exposed to fluxes of reactive nitrogen species 30-fold higher than their cytosolic counterparts. 7:

================  评  论  部  分=================

重要性:
分类:(参照 Faculty of 1000 的分类体系)


评语:

评论密码:   返回前页  [全部]