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Calculation of a Certain Determinant
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Abstract: Then×n determinant det[(a+j−i)�(b+j+i)] is evaluated.This completes
the calculation of the Mellin transform of the probability density of the determinant of a
random quaternion self-dual matrix taken from the gaussian symplectic ensemble. The
inverse Mellin transform then gives the later probability density itself.

1. Introduction and Results

Matrices whose elements, or real parameters determining the elements, are Gaussian
random variables have been extensively studied for the statistical properties of their
spectra [1]. One particular property is the probability density of the determinant (PDD)
of such matrices. The PDD ofn × n real symmetric matrices was derived by Nyquist et
al. [2] to be a Meijer G-function. The PDD ofn×n matrices belonging to the following
classes was considered recently by Normand and one of the authors [3] (i) complex
hermitian, (ii) complex, (iii) quaternion real self-dual, (iv) quaternion real, and (v) real
symmetric matrices. The method used was to compute the Mellin transform of the PDD
and then invert it to get the PDD itself. The Mellin transform in case (i) turned out to be
a determinant with elements�(a + i + j), simple enough to evaluate. Thus the PDD
for matrices of cases (i) and (ii) was found to be either a Meijer G-function or a linear
combination of two Meijer G-functions. For case (iii) the Mellin transform of the PDD
was found to depend on determinants of matrices with elements[(a+j −i)�(b+j +i)]
anda = 0 or 1/2, b = s/2 or s ± 1/2. These determinants are evaluated here thus
completing the derivation of the PDD of matrices in case (iii). The question of the PDD
of matrices in cases (iv) and (v) remains open.

In this brief note we evaluate the determinant of any matrix

[(a + j − i)�(b + j + i)]i,j=0,1,...,n−1 (1)

or its pfaffian whena = 0. The result is

Mn(a, b) = det[(a + j − i)�(b + j + i)]i,j=0,1,...,n−1 (2)
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= Dn

n−1∏
i=0

i! �(b + i), (3)

√
M2n(0, b) = Pf[(j − i)�(b + j + i)]i,j=0,1,...,2n−1

=
n−1∏
i=0

(2i + 1)! �(b + 2i + 1), (4)

where

Dn = det[aδi,j − δi,j+1 + j (b + i)δi,j−1] (5)

= coeff. of (zn/n!) in (1 − z)−(b+a)/2(1 + z)−(b−a)/2 (6)

=
n∑

k=0

(−1)k
(

b − a

2

)
k

(
b + a

2

)
n−k

(7)

with Pochhammer’s symbol

(a)n = �(a + n)/�(a). (8)

The expression forDn simplifies whena is a small integer or whena = b.
The final result for the probability densitygn(y) of the determinant of ann × n

random quaternion self-dual matrix is as follows. It is convenient to consider the even
and odd partsgn±(y) = 1

2[gn(y) ± gn(−y)] of gn(y) separately. The Mellin transform
of the even partgn+(y) was found [3] to be a constant timesMn

(1
2, s

2

)
while that of the

odd partgn−(y) was found to be a constant times Pf[(j − i)�
(
j + i + s+1

2

) × Pf[(j −
i)�

(
j + i + s−1

2

)
, if n is even, and zero ifn is odd. The Mellin transforms ofgn±(y)

are thus seen to be either a product of Gamma functions or a linear combination of these
products. Thegn±(y) and their sumgn(y) themselves are thus either a Meijer G-function
or a linear combination of two Meijer G-functions. However, it is cumbersome to write
their expressions except for small values ofn.

The corresponding problem for random real symmetric matrices or for quaternion
real matrices with gaussian element densities remains open, as noted earlier.

2. Evaluation of the Determinant

We will need the following lemma.

Lemma. For j a non-negative integer and A and B complex numbers one has the
identity

F(j, A, B) ≡
j∑

k=0

(−1)k
(

j

k

)
(A + j − k)k(B)j−k. = (B − A − j + 1)j (9)
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Proof. The lemma is trivial forj = 0 and easy to verify forj = 1. Suppose that it is
true for some positive integerj . Then for the next integer

F(j + 1, A, B) =
j+1∑
k=0

(−1)k
(

j + 1

k

)
(A + j + 1 − k)k(B)j+1−k

=
j+1∑
k=0

(−1)k
[(

j

k

)
+

(
j

k − 1

)]
(A + j + 1 − k)k(B)j+1−k

= B
∑

k

(−1)k
(

j

k

)
(A + 1 + j − k)k(B + 1)j−k

− (A + j)
∑

k

(−1)k−1
(

j

k − 1

)
(A + j − k + 1)k−1(B)j−k+1

= B F(j, A + 1, B + 1) − (A + j) F (j, A, B)

= (B − A − j)F (j, A, B) = (B − A − j)j+1. (10)

And so it is true for every positive integerj . Note that the binomial coefficient
(
j
k

)
is

zero if the integerk is either negative or is greater thanj . Actually, k! = �(k + 1) can
be replaced by∞ wheneverk is a negative integer.��
Corollary.

j∑
k=0

(−1)k
(

j

k

)
(j − k)(A + j − k)k(B)j−k = jB(B − A − j + 2)j−1. (11)

Proof.

Left hand side= jB

j−1∑
k=0

(−1)k
(

j − 1

k

)
(A + j − k)k(B + 1)j−1−k

= jBF(j − 1, A + 1, B + 1) = jB(B − A − j + 2)j−1. (12)

��
Determinant. The determinant of a matrix is not changed if we add to any of its rows
(columns) an arbitrary linear combination of the other rows (columns). Replacing the
j th columnCj = (a + j − i)�(b + j + i) by

C′
j =

j∑
k=0

(−1)k
(

j

k

)
�(b + j)

�(b + j − k)
Cj−k (13)

= (a − i)

j∑
k=0

(−1)k
(

j

k

)
(b + j − k)k�(b + i + j − k)

+
j∑

k=0

(−1)k
(

j

k

)
(j − k)(b + j − k)k�(b + i + j − k)
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= �(b + i)[(a − i)F (j, b, b + i) + j (b + i)F (j − 1, b + 1, b + i + 1)]
= �(b + i)[(a − i)(i − j + 1)j + j (b + i)(i − j + 2)j−1]

= �(b + i)

[
(a − i)

i!
(i − j)! + j (b + i)

i!
(i − j + 1)!

]
, (14)

where in the third line above we have used the lemma and its corollary. Taking out the
factors�(b + i) one has

Mn(a, b) =
[

n−1∏
i=0

�(b + i)

]
det

[
(a − i)

i!
(i − j)! + j (b + i)

i!
(i − j + 1)!

]
. (15)

Now replace the row

Ri =
[
(a − i)

i!
(i − j)! + j (b + i)

i!
(i − j + 1)!

]
(16)

by the linear combination

R′
i =

i∑
k=0

(−1)k
(

i

k

)
Ri−k (17)

=
i∑

k=0

(−1)k
(

i

k

) [
(a − i + k)

(i − k)!
(i − k − j)! + j (b + i − k)

(i − k)!
(i − k − j + 1)!

]

= i!
i∑

k=0

(−1)k
[

a − i

k!(i − j − k)! + 1

(k − 1)!(i − j − k)!

+ j (b + i)

k!(i − k − j + 1)! − j

(k − 1)!(i − k − j + 1)!
]

= i!
[

(a − i)

(i − j)!
i∑

k=0

(−1)k
(

i − j

k

)
− 1

(i − j − 1)!
i∑

k=0

(−1)k−1
(

i − j − 1

k − 1

)

+ j (b + i)

(i − j + 1)!
i∑

k=0

(−1)k
(

i − j + 1

k

)
+ j

(i − j)!
i∑

k=0

(−1)k−1
(

i − j

k − 1

)]

= i! [(a − i)δi,j − δi,j+1 + j (b + i)δi,j−1 + jδi,j ]
= i! [aδi,j − δi,j+1 + j (b + i)δi,j−1]. (18)

Thus

Mn(a, b) = Dn

n−1∏
i=0

i! �(b + i), (19)

where

Dn = det[aδi,j − δi,j+1 + j (b + i)δi,j−1]. (20)
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Expanding by the last row and last column, one gets the recurrence relation

Dn+1 = aDn + n(b + n − 1)Dn−1, (21)

D0 = 1, D1 = a, D2 = a2 + b, . . . . (22)

To findDn introduce the generating function

f (z) =
∞∑

n=0

zn

n! Dn. (23)

Multiplying Eq. (21) on both sides byzn/n! and summing overn from 0 to∞, one has

f ′(z) = af (z) + bzf (z) + z2f ′(z) (24)

since
∞∑

n=0

Dn+1
zn

n! = d

dz

∞∑
n=0

Dn

zn

n! (25)

and
∞∑

n=0

n(b + n − 1)Dn−1
zn

n! = bz

∞∑
n=1

Dn−1
zn−1

(n − 1)! + z2
∞∑

n=2

Dn−1
zn−2

(n − 2)!
= bzf (z) + z2f ′(z)

(26)

hence

(1 − z2)f ′(z) = (a + bz)f (z) (27)

or

f (z) = (1 − z)−(b+a)/2(1 + z)−(b−a)/2. (28)

This gives Eqs. (3) and (7).
If a = 0,

f (z) = (1 − z2)−b/2 =
∞∑

n=0

z2n

n!
(

b

2

)
n

(29)

so that the determinant (2) of ann × n matrix is zero whenn is odd, as it should, and
whenn is even it is

M2n(0, b) = (2n)!
n!

(
b

2

)
n

2n−1∏
i=0

i! �(b + i)

=
[

n−1∏
i=0

(2i + 1)! �(b + 2i + 1)

]2

.

(30)

The pfaffian is the square root of this and its sign can be fixed by looking at one of the
terms.
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Whena = b,

f (z) = (1 − z)−a and Dn = (a)n. (31)

Whena is a small integer, expression (7) forDn simplifies. For example, whena = 1,

f (z) = (1 + z)(1 − z2)−(b+1)/2 = (1 + z)

∞∑
n=0

z2n

n!
(

b + 1

2

)
n

(32)

and

D2n = (2n)!
n!

(
b + 1

2

)
n

, (33)

D2n+1 = (2n + 1)!
n!

(
b + 1

2

)
n

. (34)

Or whena = 2,

f (z) = (1 + z)2(1 − z2)−(b+2)/2 = (1 + z)2
∞∑

n=0

z2n

n!
(

b + 2

2

)
n

(35)

and

D2n = (2n)!
n!

(
b + 2

2

)
n

+ (2n)!
(n − 1)!

(
b + 2

2

)
n−1

, (36)

D2n+1 = 2.
(2n + 1)!

n!
(

b + 2

2

)
n

. (37)

etc.
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