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ABSTRACT A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) was found in the genome of the
hyperthermophilic archaeon Pyrococcus horikoshii. This inorganic pyrophosphatase (Pho-PPase) grows optimally at 888C. To
understand the structural basis for the thermostability of Pho-PPase, we have determined the crystal structure to 2.66 Å
resolution. The crystallographic asymmetric unit contains three monomers related by approximate threefold symmetry, and
a hexamer is built up by twofold crystallographic symmetry. The main-chain fold of Pho-PPase is almost identical to that of the
known crystal structure of the model from Sulfolobus acidocaldarius. A detailed comparison of the crystal structure of Pho-
PPase with related structures from S. acidocaldarius, Thermus thermophilus, and Escherichia coli shows significant differences
that may account for the difference in their thermostabilities. A reduction in thermolabile residues, additional aromatic residues,
and more intimate association between subunits all contribute to the larger thermophilicity of Pho-PPase. In particular, deletions
in two loops surrounding the active site help to stabilize its conformation, while ion-pair networks unique to Pho-PPase are
located in the active site and near the C-terminus. The identification of structural features that make PPases more adaptable to
extreme temperature should prove helpful for future biotechnology applications.

INTRODUCTION

Inorganic pyrophosphatase (PPase, EC 3.6.1.1) is an

essential enzyme that specifically catalyzes the hydrolysis

of the phosphoanhydride bond in inorganic phosphate (PPi)

(Chen et al., 1990; Lahti, 1983). PPi is a central phosphorus

metabolite and is a by-product of various reversible

nucleoside 58-triphosphate–dependent reactions including

tRNA charging and DNA and protein synthesis that utilize

ATP in vivo. PPases from a wide variety of sources have

been studied, but those from Saccharomyces cerevisiae and
Escherichia coli are the most highly characterized, both

biochemically and structurally. E. coli pyrophosphatase is

a homohexamer with 175 amino acids per monomer (Avaeva

et al., 1997),whereasS.cerevisiaepyrophosphatase is ahomo-

dimerwith 286 amino acids permonomer (Heikinheimo et al.,

2001).

PPases from archaebacterium exhibit different structural

and catalytic properties (Hansen et al., 1999; Richter and

Schafer, 1992). The archaeal PPases so far reported are

relatively thermostable, especially in the presence of divalent

metal cations (Ichiba et al., 1998). Understanding the

structural basis for the enhanced stability of proteins from

hyperthermophilic organisms relative to their mesophilic and

thermophilic counterparts is a highly relevant but complex

and challenging problem. Previous comparisons of high-

resolution crystal structures of enzymes with the same fold

and function in mesophiles, thermophiles and hyperthermo-

philes have revealed a number of potentially stabilizing

features. A proper understanding of the molecular basis of

thermal stability in proteins could have important conse-

quences for their application in a range of biotechnological

processes. For example, thermostable pyrophosphatases have

common uses in cycle sequencing methods using thermo-

stable DNA polymerases (Vander Horn et al., 1997). The

crystal structures of PPases from thermophilic bacterium

Thermus thermophilus (T-PPase; PDB ID 2PRD) (Teplyakov

et al., 1994), thermophilic archaebacterium Sulfolobus acid-
ocaldarius (S-PPase; PDB ID 1QEZ) (Leppanen et al., 1999),

andmesophileE. coli (E-PPase; PDB ID1JFD) (Avaeva et al.,

1997) have provided basic clues for the PPase catalytic

mechanism and thermostability, but many important aspects

remain to be resolved.

Microorganisms can be classified according to their opti-

mal growth temperature, Topt, into four groups: psychro-

philic (0 \ Topt \ 208C), mesophilic (20 \ Topt \ 508C),

thermophilic (50 \ Topt \ 808C), and hyperthermophilic

(80\ Topt\ 1208C). Considerable efforts have been made

during recent years to analyze the structural features that

determine the extraordinary thermal stability of proteins

from hyperthermophiles. Here we have isolated an inorganic

pyrophosphatase (Pho-PPase) from the hyperthermophilic

archaeon Pyrococcus horikoshii OT3, whose optimum

growth temperature (958C) is significantly higher than those

of S. acidocaldarius (75–808C), T. thermophilus (75–808C)
and E. coli (378C). Pho-PPase showed a higher optimal

activity at 888C and an alkaline optimal pH of 10.3 (at 888C).

The enzyme has extreme thermostability and does not lose
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activity at 1008C. In addition, Pho-PPase is stable against

various denaturants. All of these properties are different from

those of other archaeal PPases: full details of the character-

ization of inorganic Pho-PPase will be reported elsewhere

(Feng et al., unpublished results). To gain a more penetrating

insight into its function, here we describe the structure

determination of Pho-PPase and a comparison of the

structure with its mesophilic and thermophilic counterparts

in an attempt to understand the structural basis for thermal

stability.

MATERIALS AND METHODS

Crystallization and x-ray data collection

The preparation and preliminary characterization of Pho-PPase crystals have

been described elsewhere (B. Liu X. Li, R. Gao, W. Zhou, G. Xie, M.

Bartlam, H. Pang, Y. Feng, and Z. Rao, submitted). Briefly, the gene en-

coding inorganic pyrophosphatase from the archaea P. horikoshii was

cloned into pET15b (Novagen) and expressed in E. coli strain BL21. After

purification, the purified protein was concentrated to 20 mg/ml. Crystalli-

zation trials were set up using the hanging drop/vapor diffusion method with

Crystal Screen reagent kits I and II (Hampton Research). Crystals suitable

for diffraction were obtained after two weeks from the condition 3.8% PEG

4000, 0.1 M Na acetate, pH 5.0–5.2, 0.02 M MgCl2. A set of data at 2.66 Å

resolution were collected in house. All data were integrated using DENZO/

HKL and scaled and merged with SCALEPACK (Otwinowski and Minor,

1997). Crystal lattice properties and data-collection statistics are listed in

Table 1.

Structure determination and refinement

The structure of Pho-PPase was solved by the molecular-replacement (MR)

method using the protein S-PPase (PDB ID 1QEZ) (Leppanen et al., 1999)

as the starting model. The initial R value for the MR solution obtained from

the cross-rotation and translation search in CNS (Brunger et al., 1998) was

48.4%, using 15171 reflections in the 50-2.66 Å resolution range. This R

value is ;10% lower than those of the other possible solutions. After rigid-

body refinement, the R value decreased to 46.8, and side-chain atoms were

fitted into the 2|Fo|-|Fc| electron-density map. The structure was further

refined to 26.5% (using reflections in the resolution range 50-2.66 Å)

following cycles of simulated-annealing refinement using CNS and manual

rebuilding in O (Jones et al., 1991). After the placement and refinement of 93

water molecules and individual B factor refinement, the R factor was reduced

to 23.2%. A Ramachandran plot generated by PROCHECK (Laskowski

et al., 1993) shows that the structure has reasonable stereochemistry with no

residues in disallowed regions. Refinement statistics are summarized in

Table 1. Coordinates for this structure have been deposited in the Protein

Data Bank with PDB ID 1UDE.

RESULTS AND DISCUSSION

Monomeric structure

The current model of P. horikoshii inorganic pyrophos-

phatase includes residues 4–171 in chain A, 4–170 in chain

B, 4–170 in chain C, and 93 water molecules. Pho-PPase is

arranged in a globular form and belongs to the a1b class of

protein folds. The Pho-PPase monomer structure is com-

posed of nine b-strands and two a-helices arranged in a

b1-b2-b3-b4-b5-b6-b7-b8-a1-b9-a2 topology (Fig. 1).

Pho-PPase shares 47% sequence identity with S-PPase

(Fig. 2 A), and the two proteins have a similar core structure.

Indeed, superposition of the Pho-PPase structure with

S-PPase, T-PPase, and E-PPase shows that the four PPases

are spatially homologous (Fig. 2 B). The RMSD between

Ca atoms of the four PPases range from 0.83 to 1.14 Å.

The mutual positions of the central b-barrel structure and

a-helices are similar. However, the structure-based sequence

alignment (Fig. 2 A) shows that Pho-PPase contains a single
residue deletion in the loop formed by residues 25–30, two

residues deleted in the loop formed by residues 111–114, and

three residues deleted in the loop formed by residues

144–148.

Oligomeric structure

The Pho-PPase structure consists of three molecules in the

asymmetric unit. The first subunit contains residues 4–171

out of a total of 178 residues; the second subunit contains

residues 4–170; and the third subunit contains residues

4–170 with a Y170A substitution. Subunits 2 and 3 can

be superimposed onto the first subunit with RMSDs of 0.61

Å and 0.65 Å, respectively. The three Pho-PPase monomers

are related by a noncrystallographic threefold axis to form

a tight trimer with an extensive subunit interface. As can

been seen in Fig. 1 B, the main contact region concerns

TABLE 1 Data collection, refinement, and model statistics

Data collection

Space group P21212

Unit cell parameters a ¼ 71.8, b ¼ 86.7, c ¼ 92.8 Å

a ¼ b ¼ g ¼ 908

Matthews coefficient (Å3 Da�1) 1.93

Solvent content (%) 35.65

Resolution (Å) 50-2.66

Total observations 118041

Unique reflections 17030

Redundancy 6.93

Average I/s(I) 12.1 (4.3)

Rmerge (%) 7.5 (13.9)

Completeness (%) 99.8 (98.0)

Refinement

Reflections

(observed) 117986

(test) 1687

Resolution range (Å) 50-2.66

Protein atoms 4148

Solvent atoms 93

Rwork (%) 23.24

Rfree (%) 27.65

Average B value (Å2) 38.19

RMSD bonds (Å) 0.009

RMSD angles (8) 1.6

Ramachandran plot (%)

Most favored regions 76.9%

Additionally allowed regions 19.6%

Generously allowed regions 3.3%

Disallowed regions 0.2%
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strands b2 and b3 of the b-barrel of one subunit and a

b-hairpin (residues 78–85) of another subunit. There are

many hydrophobic and hydrophilic interactions between sub-

units to enhance the enzyme stability, which will be discussed

in further detail below.

From the crystallographic symmetry, the trimers are

packed such as to form a tightly packed hexamer with

twofold crystallographic symmetry. The intertrimer inter-

actions in Pho-PPase are listed in Table 2. There are no large-

scale distortions in monomeric structure, and the increased

thermostability of Pho-PPase likely results from an increase

in both hydrophilic and hydrophobic interactions. Intertrimer

interactions are concentrated in strand b3, helix a1, and the

loop between b8 and a1. The overall surface area buried in

the hexamer is 2342 Å2, which is comparable to the 2430 Å2

buried by the T-PPase hexamer and higher than the 2090 Å2

buried by the E-PPase hexamer (Salminen et al., 1996).

Active center

The active site cavity of Pho-PPase is formed between the

b-barrel and helix a1. The overall shape and size of the

active site is very similar to those of E. coli and yeast PPases
(Avaeva et al., 1997). It has been previously suggested that

17 residues might be involved in Mg21 and PPi binding, 15

of which appear to be conserved in all sequences of soluble

PPases known to date. Accordingly, all 15 of these

conserved residues (E23, K31, E33, R44, Y52, Y56, D66,

D68, D71, D98, D103, K105, Y140, K141, K146) also

reside in the active-site cavity of Pho-PPase (Fig. 2). This

implies that Pho-PPase will share the general catalytic

mechanism of the PPase family in vivo, although the

maximal enzyme activity of Pho-PPase is gained under

a strong alkaline environment in vitro. Although Pho-PPase

includes the conserved residues involved in Mg21 binding,

no Mg ion was observed in the Pho-PPase structure despite

the addition of MgCl2 during crystallization. Many crystals

soaked in MgCl2 were found to crack, which suggests that

conformational changes may occur to prevent Mg21 bind-

ing. A similar observation was made in the structure of

E-PPase (Kankare et al., 1994).

The crystal structure of Pho-PPase reveals that K102,

equivalent to residue E101 in E-PPase, is important for the

active-site cavity and is located in the highly conserved

region including the essential catalytic residues (numbered

E97, D102, and K104 in E-PPase). Mutagenesis studies of

E-PPase have shown that the enzyme activity of mutants

E99D, D102E, and K104E almost disappeared or decreased

rapidly (Hyytia et al., 2001). However, when E101 is

replaced by a more negative aspartic acid residue, the en-

zyme activity of the mutant was increased by 10%. Align-

ment with other PPases shows that the residue located in the

site is conserved as either an acidic or neutral residue. We

propose that K102 is related to the alkaline optimal pH (10.3)

of Pho-PPase, since only in such an alkaline environment

would K102 not be positive. Further site-directed mutagen-

esis studies are in progress to investigate the role of K102.

Structural basis of thermostability in Pho-PPase

The free energy of stabilization of globular proteins is rather

small. It lies in the range from 30 to 65 kJ/mol (Pfeil et al.,

1986), which is equivalent to the energy contributed by a

few hydrogen bonds, ion pairs, or hydrophobic interactions.

The increase in free energy of stabilization observed for

thermophilic proteins is of the same order of magnitude

(Harris et al., 1980; Nojima et al., 1978). Recent structural

studies also have identified several factors which are more

often observed among thermophilic proteins and may

account for their stability. These include an increased

number of salt bridges or hydrogen bonds; optimized

stability of helices, loops, and N- and C-termini; decreased

solvent-exposed surface area; stronger interactions between

the subunits in oligomers; and even an increased number of

buried solvent molecules in hydrophilic cavities. We

compare the present 2.66 Å resolution structure with three

FIGURE 1 (A) A ribbon representation of the Pho-PPase monomer

structure. The structure is colored from blue at the N-terminal to red at the

C-terminus. Secondary structure elements have been labeled. (B) Top and

side views of the Pho-PPase hexamer. Three subunits are related by

a noncrystallographic threefold axis to form a trimer. Two trimers are related

by a crystallographic twofold axis to form a tightly packed hexamer.
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other PPases, to identify which factors may be important in

stabilizing Pho-PPase.

Amino acid composition and thermostability

The amino acid composition of a protein has long been

thought to be correlated with its thermostability. Compared

with related PPase structures, the unusual amino acid

composition of Pho-PPase would account for its extreme

thermostability. The structure-based sequence alignment

(Fig. 2) shows the amino acid sequences of the four PPases

compared in this study. More charged residues were found in

Pho-PPase, which is consistent with the idea that the number

of ion pairs is an important determinant of protein

thermostability. For instance, Pho-PPase contains a total

number of eight arginine residues, which have a tendency to

form multiple ion-pairs and H-bonds. Pho-PPase also

contains 14 proline residues, which is the largest proportion

in the four PPases studied here. Since proline residues affect

local mobility of the chain by decreasing the conformational

entropy of the unfolded state, the increased rigidity of the

structure would be expected to increase the overall ther-

mostability. Such stabilization by the introduction of proline

residues into loop regions is a well-documented phenome-

non (Matthews et al., 1987). A recent study of inorganic

pyrophosphatase from thermophilic bacterium PS-3 was

carried out in which proline residues were systematically

replaced by alanines (Masuda et al., 2002). The authors

found that most of the proline residues in PS-3 PPase play

very important roles, and many of them are critical for the

structural integrity of the protein. They also concluded that

the thermostability of PS-3 PPase is profoundly related with

its subunit structure.

The total number of hydrophobic residues (Gly, Ala, Val,

Leu, Ile, Met, Phe, Trp, and Pro) is also highest in Pho-

PPase. Compositional differences between the PPases are

more pronounced among exposed sites. Pho-PPase has an

increased number of exposed hydrophobic residues, which

are presumably involved in oligomer formation and stability.

Interestingly, previous site-directed mutagenesis of

E-PPase has shown that aromatic residues play a very

important role for the thermostability (Hyytia et al., 2001).

There are an increased number of aromatic residues found in

Pho-PPase compared to three other PPases. In particular,

FIGURE 2 (A) A structure-based se-

quence alignment between Pho-PPase

and three related PPase structures from

T. thermophilus (T-PPase; PDB ID

2PRD) (Teplyakov et al., 1994), S. aci-

docaldarius (S-PPase; PDB ID 1QEZ)

(Leppanen et al., 1999) and E. coli

(E-PPase; PDB ID 1JFD) (Avaeva et al.,

1997). Secondary structure elements are

shown for Pho-PPase. (B) A stereodia-

gram showing the superposition of the

four PPase structures. Structures are

represented as Ca backbone traces.

The coloring is as follows: red, Pho-

PPase; blue, S-PPase; green, T-PPase;

magenta, E-PPase. RMSD between Ca

atoms of the four PPases range from

0.83 to 1.14 Å.
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TABLE 2 Oligomeric interactions in E-PPase, T-PPase, S-PPase, and Pho-PPase

E-PPase a distance T-PPase a distance S-PPase b distance Pho-PPase distance

From To (Å) From To (Å) From To (Å) From To (Å)

Intratrimeric A-B hydrophilic contacts

S1 S36 2.79 N27 Y77 3.59 N16 K40 3.41 R28 E78 2.87

Y30 Q80 3.32 I39 V84 2.93 Y30 Y80 3.48 N29 E29 2.98

L39 V84 2.86 L41 V84 2.83 I39 V84 3.09 N29 E78 3.44

V41 V84 2.85 V44 E111 3.23 V41 V84 2.90 N29 P79 3.21

F44 L113 2.96 L45 R116 2.86 D42 T113 3.52 L40 I85 2.76

L45 R116 2.93 V44 T113 2.78 K41 E87 3.39

Q115 L144 3.56 Y46 K112 2.49 L42 I85 2.86

R44 E112 2.82

V45 G112 2.67

Intertrimeric A-D hydrophilic contacts

S46 Q133 2.89 A48 F50 3.54 S48 N50 3.13 R28 E132 3.00

A48 F50 3.01 Q132 K148 3.00 S48 Og N50 2.57 T48 H135 3.58

H136 D143 2.76 H136 T140 3.21 H136 H140 3.45 P49 H51 2.64

H136 E143 2.66 H135 E142 2.48

R139 E142 3.01 R138 E142 3.16

Intertrimeric A-E hydrophilic contacts

N24 Y77 3.35 R116 E133 3.33 R77 E132 2.74

R116 E133 3.27

R116 E133 2.82

Q115 Q132 3.33

Intratrimeric A-B hydrophobic contacts

L2 A28 3.92 P6 L36 3.91 L5 E36 4.03 F4 L39 4.07

D26 Y77 3.58 Y30 V83 3.98 L5 V38 4.05 R28 E78 3.84

P27 Y77 2.89 I39 V83 3.77 I28 Y77 3.78 N29 E78 4.10

I28 Y77 3.76 L41 V109 3.81 I28 L79 4.10 L39 L20 3.85

Y30 S83 3.99 R43 E111 3.98 Y30 Y80 3.51 L40 T84 3.91

L39 S83 3.94 V44 Y77 3.60 K40 V84 4.02 K41 E87 3.79

F40 V84 3.67 V44 V109 3.99 V41 L79 3.95 L42 M76 3.39

V41 L79 3.80 V44 D114 3.81 V41 T113 4.01 L42 I86 3.90

V41 L113 3.73 L80 P81 3.49 V44 Y77 3.72 K44 E112 3.78

F44 T75 3.40 Y46 P115 3.40 V45 M76 4.02

F44 P76 3.69 Y80 P81 3.63 V45 D113 3.53

F44 S114 3.99 Y47 P114 3.89

P82 Y81 3.60

Intertrimeric A-D hydrophobic contacts

P27 F50 3.99 A48 F50 3.79 T47 K133 3.38 R28 E132 3.87

S46 L129 3.86 A48 P52 4.00 S48 P52 4.09 T48 H135 3.62

T47 H136 3.57 A48 E133 3.80 S48 K133 4.02 T48 F50 3.24

A48 F50 3.73 Q49 H136 3.91 M49 M49 3.38 P49 F50 3.83

M49 M49 3.88 F50 F50 3.56 H136 L144 3.99 P49 E132 3.38

H136 L144 3.96 Q132 L144 3.98 H140 H140 3.25 P49 P53 4.05

H136 D143 3.37 T140 T140 3.76 F50 F50 4.06

H140 H140 3.61 H51 H51 3.47

H135 L143 3.94

R139 R139 3.51

Intertrimeric A-E hydrophobic contacts

R116 E133 4.00 N76 N76 3.81–4.00 P114 A128 3.58

H119 P127 3.41 P115 A129 3.88–4.18 P114 A128 3.58

Y115 P126 3.69

Y115 A128 3.82
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there is an increased frequency of phenylalanine and tyrosine

residues in Pho-PPase, which are liable to form hydrophobic

and aromatic interactions. Many of these aromatic residues

are observed to form a cluster located at the bottom of the

active site, and it is possible that stacking interactions

involving the aromatic residues may contribute to enhanced

thermostability of Pho-PPase.

The frequency of Asn (2) and Gln (0), which can be

classed as thermolabile due to their tendency to undergo

deamidation at high temperatures and therefore may be

naturally discriminated against in thermostable proteins, is

substantially reduced in Pho-PPase. Cysteine was also

completely absent in Pho-PPase, which is easy to interpret

since cysteine is highly sensitive to oxidation at high

temperature. The frequency of glycine was not decreased,

but changed in location. Interestingly, residue L83 of Pho-

PPase is strictly conserved as a glycine in other PPases and is

located in the short loop connecting b-strands 5 and 6, thus

increasing the rigidity of the Pho-PPase structure.

Ionic interactions and thermostability

The importance of ion-pairs as determinants of protein

thermostability was first highlighted by Perutz and Raidt

(Perutz and Raidt, 1975) while comparing ferredoxin and

hemoglobin structures, and ion-pairs were subsequently pro-

posed to be important for the stability of a number of other

thermostable proteins (Korndorfer et al., 1995; Walker et al.,

1980). Indeed, several reports of high resolution structures of

hyperthermophilic proteins show the number of ion-pairs in

most of the hyperthermophilic proteins is higher than in their

mesophilic counterparts (DeDecker et al., 1996; Hennig

et al., 1995; Yip et al., 1995). A total of 12 ionic interactions

are formed per monomer in the E-PPase short c-axis crystal
form, which is equivalent to the number in T-PPase and

lower than S-PPase (17 ionic pairs). In contrast, there are 28

ionic interactions scattered throughout the Pho-PPase mono-

mer (Table 3). It appears that Pho-PPase is more stabilized

by ion-pairs than T-PPase, E-PPase, and S-PPase. Although

the number of ion-pairs is increased, the multicenter ion

interactions are decreased. Interestingly, two long ion-pair

networks are observed in Pho-PPase. The first ion-pair

network is located in the C-terminus a2 helix, which may

stabilize the C-terminus against thermal denaturation. The

second ion network is located in the active center and

involves residues 112–120 and 127–139. There is also an

increase in the number of intrasubunit ion-pairs in Pho-

PPase, and their involvement in complex networks mirrors

that observed in the structure of the hyperthermophilic

Pyrococcus furiosus glutamate dehydrogenase (Yip et al.,

1995). The presence of ion-pair networks has also been

observed in Sulfolobus solfataricus indole-3-glycerol phos-
phate synthase (Hennig et al., 1995) and the TATA-box

binding protein from P. furiosus (DeDecker et al., 1996).

The presence of ion-pair networks may be energetically

favorable due to the shared entropic cost upon ion-pair

formation (Nakamura, 1996).

The positioning of ion-pairs is also crucial (Daggett and

Levitt, 1993). Loop or random coil regions of a protein tend

to be the most flexible areas and are the most likely to deform

at high temperatures. Compared with the three other PPases

used in this study, Pho-PPase has three shorter loops, of

TABLE 3 Ionic interactions within a monomer

E-PPase distance T-PPase distance S-PPase distance Pho-PPase distance

From To (Å) From To (Å) From To (Å) From To (Å)

E13 K162 3.66 K10 E86 3.69 D13 K162 2.64 E15 K161 3.16

D14 R86 2.79 E13 R166 4.12 K29 E31 2.81–3.93 K30 D43 3.12–3.76

D14 H110 3.66 K29 E31 3.86 D33 K40 2.57–5.60 K41 E87 3.96

K29 D42 2.7 D42 R43 2.11 E36 K40 3.20–5.99 R44 E144 3.12

R43 E154 2.71 R43 E145 4.02 R43 E145 2.43–3.20 R44 K112 2.82

D70 K104 2.87 E64 R171 2.89 R43 D42 2.85 D71 K105 3.72

K94 E101 3.47 D70 K104 3.03 E63 R164 2.83 R77 D113 3.26–3.72

D97 K142 3.55 E98 K99 4.5 E63 R171 3.90 K95 E154 4.00

D102 K104 3.07 E98 K142 2.58 E64 R171 3.88 K95 E155 3.16

H140 E139 3.43 D102 K104 3.02 D70 K104 2.94 D98 K141 3.98

H140 D143 2.93 D114 R116 3.13 E86 K110 3.22 D103 K105 3.76

E159 K162 3.76 D122 R158 3.84 R88 D111 3.11 K117 D118 3.15

E98 K142 3.15 E145 K148 3.65 D118 K120 3.54

E98 K148 3.50 E163 R166 4.04 K127 D131 3.16

�4.09 D102 K104 2.91 E132 H135 3.73

H140 E143 3.04 R139 E142 3.26

E145 K148 2.46–4.06 R139 K138 3.46

E144 K146 3.56

E157 K160 3.24

E157 K160 3.58

E162 R165 2.22

E169 K171 3.17
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which two lie in the active site and the third sits at the

molecular surface. In contrast, the loops found in E-PPase

are longest of the four PPase structures. This observation,

that the higher the growth temperature of the organism the

shorter the protein loops, is consistent with high temperature

molecular dynamic simulations on bovine pancreatic trypsin

inhibitor, which revealed that loop and turn regions are likely

to be the parts of the structure that unfold first during thermal

denaturation. The structure of thermostable endocellulase

(Sakon et al., 1996) also showed a reduced size of loop

regions, and a similar strengthening of loop regions was also

observed in S. solfataricus indole-3-glycerol phosphate

synthase (Hennig et al., 1995).

Oligomerization and thermostability

In the PPase family, the oligomerization state stabilizes the

conformation of the enzyme that binds substrate and vice

versa (Baykov et al., 1995). The oligomeric packing appears

to provide a general strategy for enhancing the thermosta-

bility of the PPase family. Pho-PPase seems to be a more

tightly packed hexamer. The total number of oligomeric

hydrophilic contacts is listed in Table 2. There are notably

more intermonomer hydrophilic interactions in Pho-PPase

compared with the three other PPases, resulting in tighter

twofold A-E and threefold A-B interfaces. This effect can be

measured by the accessible surface area (ASA) buried per

monomer on oligomerization, which is 13.6% higher than for

S-PPase and 12.1% higher than for E-PPase. These increased

hydrophilic interactions may provide the extra energy

necessary for stabilization. Similar observations are found

in several thermophilic protein structures. For example,

thermostability was attributed to improved subunit interfaces

in L-lactate dehydrogenase from Bacillus stearothermophilus
(Kallwass et al., 1992), malate dehydrogenase from Thermus
flavus (Kelly et al., 1993), and ornithine carbamoyltransfer-

ase from P. furiosus (Villeret et al., 1998). Other studies also
indicate that multimer formation and subunit interactions are

critical for thermal stability of, for example, hemocyanin

from the ancient tarantula Eurypelma californicum (Sterner

et al., 1995), phosphoribosyl anthranilate isomerase from the

hyperthermophile Thermotoga maritima (Hennig et al.,

1997), GluDH from the hyperthermophile P. furiosus
(Vetriani et al., 1998), and chorismate mutase from the ther-

mophilic archaeon Methanococcus jannaschii (MacBeath

et al., 1998).

Helices and thermostability

It has been previously reported that the helical conformation

is stabilized by oppositely charged ion-pair interactions (i.e.,

Glu-Lys, Glu-Arg, Asp-Lys, Asp-Arg) in the positions

(i,i14) or (i,i13) (Scholtz et al., 1993). The a1 helix

contains a single ion-pair between the nonconserved residues

K127-D131. Examination of the C-terminus a2 helix

sequence indicates that Pho-PPase contains a significant

increase in the number of charged residues compared with

the other PPases (Fig. 2 A). These residues—E157, R161,

E162, R165, E168, K171—are ideally distributed in the

sequence to allow the formation of intrahelix ion-pairs. The

structure of Pho-PPase shows three intrahelical ion-pairs

formed between residues E157-R161, E162-R165, and

E169-K172 (Table 3), which are not conserved in other

PPase structures. These additional ion-pairs may be re-

sponsible for the increased thermostability of Pho-PPase by

stabilizing the C-terminus and increasing its resistance to

denaturation.

CONCLUSIONS

Comparison of the structure of Pho-PPase with T-PPase,

S-PPase, and E-PPase has identified a number of determining

factors for the thermostability of PPase enzymes. Pho-PPase

is the most thermostable of the four structures, and this is

reflected by the following factors. First, shorter and more

convergent loops in the active site imply that the two loops

are important for enzyme-substrate or ion binding under high

temperature, and this is consistent with the idea that shorter

loops are more helpful for thermostable PPases to stabilize

the conformation of the enzyme-substrate complex. Second,

the basis of thermostability in PPases is generally believed to

be related to the oligomer structure; Pho-PPase has an

increase in the number of both intermonomer and intertrimer

interactions, and this results in tighter packing of the hexamer.

Third, an increase in the number of ion-pairs—in particular,

two ion-pair networks—helps to stabilize the structure. One

ion-pair network in the loop connecting strand b8 and helix

a1 may help to stabilize the conformation of the active site,

while another network in helix a2 may stabilize the

C-terminus and increase its resistance to thermal denatur-

ation. The structure of Pho-PPase and the comparison be-

tween PPase structures should stimulate further kinetic and

structural studies of enzymes adapted to extreme temperature

and prove helpful for future biotechnology applications.
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