H₂O₂ directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells

Yi Zheng, Xun Shen

Institute of Biophysics, Chinese Academy of Science, Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China

The mechanisms of H_aO_a -induced Ca^{2+} release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H_2O_2 -induced cytosolic Ca^{2+} mobilization. No elevation of inositol 1,4,5trisphosphate (IP_3) was detected in cells exposed to H_2O_2 . By loading mag-Fura-2, a Ca²⁺ indicator, into intracellular store, the H₂O₂-induced Ca²⁺ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca²⁺ release from internal stores after the Ca²⁺-ATPase on ER membrane and the Ca²⁺ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide ptrifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive nonmitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.

Keywords: Hydrogen peroxide, IP₃ receptors, endothelial cells, Ca²⁺ mobilization

INTRODUCTION

Reactive oxygen species (ROS) comprises a group of molecules including hydrogen peroxide (H₂O₂), superoxide anion (O_2^{-}) , singlet oxygen $(^1O_2)$ and hydroxyl radicals (HO'). They play important roles in many cellular processes including proliferation, apoptosis and regulation of various gene expressions. Among the diverse species of ROS, H₂O₂ plays a key role because it is generated metabolically, appears in nearly all-oxidative stress conditions and is able to diffuse freely into and out of cells and tissues. Recently, H₂O₂ has also been recognized as a second messenger regulating cell response. H₂O₂ at low concentration can stimulate proliferation or

Received 15 September 2004 Revised 3 January 2005 Accepted 24 January 2005

Correspondence to: Xun Shen, Institute of Biophysics, Chinese Academy of Sciences, 15# Datun Road, Chaoyang District, Beijing 100101, P. R. China Tel: +86 10 64888574; Fax: +86 10 64871293; E-mail: shenxun@sun5.ibp.ac.cn

enhance survival in many types of cells including human endothelial cells,1 while at high concentration it causes cell death by both apoptosis and necrosis.2-4

An elevation of cytosolic Ca²⁺ concentration induced by H₂O₂ was found in a variety of cell types such as smooth and skeletal muscle cells,⁵ endothelial cells,⁶ neuronal cells7 and cardiomyocytes.8 Since cytosolic calcium is one of the most important second messengers, its concentration is a pivotal regulatory factor for a large number of cellular processes such as enzyme activation,9 muscle contraction, metabolism, secretion, cell proliferation¹⁰ and apoptosis.¹¹ Thus, to know the mechanism of cytosolic Ca2+ elevation in cells exposed to H2O2 has been an essential step in understanding the signaling involved in H2O2-mediated or various oxidative stress-induced cell responses.

It has been well characterized that the binding of the inositol 1,4,5-trisphosphate (IP_3), the product of a phosphatidylinositol-specific phospholipase C, to its receptor

Abbreviations: IP₃, inositol 1,4,5-trisphosphate; PLC, phosphatidylinositol-specific phospholipase C; ER, endoplasmic reticulum; FCCP, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone; TG, thapsigargin; DMEM, Dulbecco's Modified Eagle Medium

 (IP_3R) on endoplasmic reticulum (ER) is the main pathway to initiate Ca2+ release from intracellular stores and then triggers a Ca2+ entry by depletion of intracellular Ca2+ stores in many cell types.^{12,13} Furthermore, mitochondria^{14,15} and even Golgi apparatus¹⁶ were also involved in the mobilization of cytosolic calcium. Though a considerable number of investigations have been devoted to elucidating the mechanisms involved in H₂O₂-induced Ca²⁺ signaling, the detailed mechanisms are still elusive. Some investigations suggested that H₂O₂-induced calcium release from the thapsigargin-sensitive intracellular store was likely mediated by oxidation of sulfhydryl groups in Ca²⁺-ATPases,¹⁷ or by activation of phospholipase C_{γ} via tyrosine phosphorylation by H2O2.18 Although an early study of canine venous endothelial cells had already suggested that H2O2 accessed the inositol 1,4,5-trisphosphate-sensitive Ca²⁺ store,⁶ the IP₂ receptor on ER membrane has not been in focus. Although activation of the ryanodine receptor by ROS was reported,19 no direct evidence for the activation of IP₃ receptor by H₂O₂ has been available. In addition, the thapsigargin-sensitive Ca2+ stores or IP3-sensitive Ca2+ store6,20 and mitochondrial intracellular stores17 have been reported to be involved in H₂O₂-induced Ca²⁺ release, but no other intracellular store has been implicated.

In this study, we demonstrate that H_2O_2 -induced cytosolic Ca²⁺ mobilization mainly through direct activation of the IP₃ receptor. Besides, thapsigargin-sensitive and mitochondrial Ca²⁺ stores, there might be another intracellular Ca²⁺ store, which is insensitive to thapsigargin and non-mitochondrial, involved in H_2O_2 -induced cytosolic Ca²⁺ mobilization.

MATERIALS AND METHODS

Reagents

1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-y1]amino}hexyl)-1H-pyrrole-2,5-dione (U73122), carbonyl cyanide *p*-trifluoromethoxyphenyl hydrazone (FCCP), thapsigargin (TG), histamine dihydrochloride, digitonin, heparin and D-*myo*-inositol 1,4,5-trisphosphate hexasodium salt (IP₃) were purchased from Sigma. Fura-2/AM and mag-Fura-2/AM were bought from Molecular Probes. The D-*myo*-inositol 1,4,5-trisphosphate (P₃) [³H]-assay system was obtained from Amersham Pharmacia Biotech. Digitonin, FCCP and TG were dissolved in fresh DMSO just before use. The final concentration of DMSO in the buffer never exceeded 0.1%.

Cell culture

The human umbilical vein endothelial cell line (ECV304 cells) was grown in DMEM containing 10% calf serum,

1 g/l D-glucose, 100 μ g/ml streptomycin and 100 U/ml penicillin. For microscopic measurement of intracellular calcium, the cells were plated in a glass-bottom dish and incubated at 37°C overnight.

Microscopic measurement of intracellular Ca²⁺ *concentration*

The intracellular Ca2+ was measured using the Fura-2/AM fluorescent probe.²¹ The cells were plated in glass-bottomed dishes (2 x 10⁵ cells), cultured overnight and loaded with Fura-2/AM. Then, they were washed 4 times either with Ca²⁺ buffer (10 mM HEPES, 145 mM NaCl, 5 mM KCl, 2.5 mM CaCl₂, 1 mM MgCl₂, pH 7.4) or with Ca²⁺free buffer, in which 2.5 mM CaCl, was replaced with 1.5 mM EGTA, to remove free Fura-2/AM. Thereafter, 1.0 ml of the desired buffer was added to the dish. After 10 min incubation at 37°C, the fluorescence images of the attached cells on the bottom glass were taken every 20 s at an emission wavelength of 510 nm by consecutively exciting cells at 340 nm and 380 nm for 100 ms on an Olympus IX-71 inverted microscope equipped with the Aqua-Cosmos Microscopic Image Acquisition and Analysis System provided by Hamamatsu Photonics K.K. (Japan). The digitized fluorescence ratio (F_{340}/F_{380}) reflects the concentration of intracellular calcium.

Assay of $Ins(1,4,5)P_3$ production

The generation of IP₃ in cells was quantified after H_2O_2 - or histamine-stimulation by the [³H]-IP₃ competitive binding assay²² using D-myo-inositol-1,4,5-trisphosphate (IP₃) [³H]-assay system. The ECV304 cells (2 x 10⁶) in 2 ml HBS buffer were stimulated with histamine for 60 s or exposed to H_2O_2 for 5 min at 37°C, and then rapidly cooled in an ice bath. The cells were harvested by centrifugation and lysed with 100 µl ice-cold 4% perchloric acid. The acid-insoluble component was sedimented by centrifugation at 2000 g for 15 min at 4°C. The supernatant was neutralized to pH 7.5 with ice-cold 10 M KOH. The resultant KClO₄ in the neutralized mixture was removed by centrifugation at 4°C. The neutralized supernatant was used to quantify the IP₃ concentration according to the manufacturer's protocol. All assays were performed in duplicate.

Measurement of Ca^{2+} release from intracellular Ca^{2+} stores in permeabilized cells

The measurement of Ca^{2+} release from the IP₃ receptormediated store was performed in permeabilized cells according to the method described by Hu *et al.*²³ with minor modifications. Before measurements, two intra-

RESULTS

cellular-like media (ICM) with and without Mg^{2+}/ATP and a Ca2+-releasing medium were freshly prepared. The Mg²⁺/ATP-free ICM consists of 125 mM KCl, 19 mM NaCl, 10 mM HEPES, 1 mM EGTA and 0.33 mM CaCl, (the free Ca2+ concentration was 50 nM), and was adjusted to pH 7.2. The complete ICM was made from Mg2+/ATP-free ICM by adding 1 mM ATP and 1.4 mM MgCl₂ (the free Mg²⁺ concentration was 0.1 mM). The Ca²⁺-releasing medium consists of 125 mM KCl, 19 mM NaCl, 10 mM HEPES, 1.4 mM MgCl₂ and 150 nM CaCl₂, and was also adjusted to pH 7.2. In brief, the cells were loaded with mag-Fura-2, and then permeabilized by adding 20 µg/ml digitonin in the Mg²⁺/ATP-free ICM for 10 min at room temperature. Permeabilization was monitored by observing release of the cytosolic mag-Fura-2 fluorescence, while the fluorescence associated with organelles persisted after permeabilization. The permeabilized cells were washed with Mg2+/ATP-free ICM to remove digitonin, perfused with complete ICM for 10 min to allow for refilling of intracellular Ca2+ stores and then with Ca2+-releasing medium for at least 10 min. Fluorescence imaging of the permeabilized cells was performed before and after addition of IP3 according to the same procedure described above for intact cells. However, the observed fluorescence ratio (F_{340}/F_{380}) reflects the Ca²⁺ concentration within the intracellular stores.

 H_2O_2 -induced Ca^{2+} release from intracellular stores and subsequent Ca^{2+} entry

As shown in Figure 1, when ECV304 cells were exposed to 1 mM H_2O_2 in Ca²⁺-free buffer, the cytosolic Ca²⁺ concentration was elevated to a higher static level within 20 min and then remained at that level with a very slow decline. Since no free calcium was present in the extracellular space, the elevation of cytosolic Ca²⁺ must be due to a release of Ca²⁺ from internal stores. When 2.5 mM CaCl₂ was added in the buffer after exposure to H_2O_2 , the cytosolic Ca²⁺ concentration in the cells rose to an even higher level very rapidly, indicating a pulsed Ca²⁺ influx from outside the cell.

Phospholipase C is not involved in the H_2O_2 -stimulated Ca^{2+} mobilization

Since activation of phospholipase C (PLC) by H_2O_2 was reported as a major pathway involved in H_2O_2 -induced rapid Ca²⁺ mobilization,¹⁸ it was carefully re-examined in the present investigation. In order to know if PLC is involved in H_2O_2 -induced Ca²⁺ release or not, U73122,

Fig. 1. H_2O_2 -induced Ca²⁺ release from internal stores and subsequent Ca²⁺ entry in Fura-2-loaded single living cells. The cells were perfused in Ca²⁺-free buffer and exposed to 1 mM H_2O_2 . CaCl₂ (2.5 mM) was added 40 min after exposure to H_2O_2 . The cytoplasmic Ca²⁺ concentration was measured as the ratio of the fluorescence excited at 340 nm, F_{340} , to the fluorescence excited at 380 nm, F_{380} , at 37°C. The kinetic curves are the average of those observed in 6 cells and are representative of 3 independent experiments.

Fig. 2. Effect of U73122 on H_2O_2 -induced cytoplasmic Ca²⁺ mobilization in Fura-2-loaded single living cells. The cytoplasmic Ca²⁺ concentration is represented as the ratio of the fluorescence excited at 340 nm, F_{340} , to the fluorescence excited at 380 nm, F_{380} , measured at 37°C. (A) H_2O_2 (1 mM) was added to the cell-perfusing Ca²⁺-free buffer and Ca²⁺ release and subsequent Ca²⁺-entry was measured in the cells pre-incubated with or without 2 μ M U73122 for 15 min. (B) Histamine (0.1 mM) was added to the cell-perfusing Ca²⁺-free buffer and Ca²⁺ release and subsequent Ca²⁺-entry was measured in the cells pre-incubated with or without 2 μ M U73122 for 15 min. (C) Production of Ins(1,4,5)P₃ in control cells and cells (10⁶ cells/ml) exposed to 1 mM H₂O₂ and stimulated by 0.1 mM histamine, respectively. Data are the mean of two independent measurements and standard deviation (±SD) is indicated by bars. The kinetic curves are averaged over 6 cells and are representative of 3 independent experiments.

the selective inhibitor of PLC, was used to treat the cells before exposure to H_2O_2 . As a positive control, the effect of U73122 on histamine-stimulated Ca²⁺ release in the cells was also investigated. It was found that pretreatment of the cells with U73122 did not modify the Ca²⁺ release and subsequent Ca2+-entry caused by addition of extracellular calcium in cells exposed to H_2O_2 (see Fig. 2A); however, U73122 substantially inhibited both Ca²⁺ release from intracellular stores and subsequent Ca²⁺ influx into cells stimulated by histamine (see Fig. 2B). The results clearly indicate that the H₂O₂-stimulated Ca²⁺ release may not be mediated by a PLC-coupled receptor or through activation of PLC. These results were further confirmed by the measurement of IP₃ generation in cells exposed to H_2O_2 or histamine (see Fig. 2C). The measurements showed that histamine but not H₂O₂ significantly increased IP₃ concentration in the cells. Both the experiment with the PLC inhibitor and the assay of IP₃ generation in cells exposed to H₂O₂ and stimulated by histamine suggest that the H_2O_2 -induced cytoplasmic Ca^{2+} mobilization is not the result of PLC activation or IP_3 production.

H_2O_2 stimulates Ca^{2+} release from intracellular stores by direct activation of the IP₃ receptor on ER membrane

The present study has already shown that H_2O_2 does not elicit the production of IP₃ in these cells. Can the Ca²⁺ store in ER be opened without IP₃? To answer this question, permeabilized cells were used and the Ca²⁺ content within the intracellular stores was directly monitored before and after exposure to H_2O_2 by loading mag-Fura-2/AM, the Ca²⁺ indicator, into the stores. It was found that H_2O_2 could directly induce calcium release from intracellular store without IP₃ generation in a dosedependent manner. As shown by curve 'a' of Figure 3, the first addition of 10 μ M H₂O₂ in the cell-perfusing

Fig. 3. H_2O_2 -induced Ca^{2+} release from intracellular store in permeabilized cells and its inhibition by heparin. (a) 10 μ M, 50 μ M and 100 μ M H_2O_2 was added sequentially into the cells-perfusing Ca^{2+} releasing medium, the arrow-indicated drop of the fluorescence ratio F_{340}/F_{380} of mag-Fura-2 loaded in intracellular stores of the permeabilized cells represents the Ca^{2+} release from the stores. (b) In the presence of 10 μ g/ml heparin, addition of 100 μ M H_2O_2 in the cell-perfusing medium did not cause any drop of the mag-Fura-2 fluorescence ratio. The kinetic curves are the average of those observed in 6 cells and are representative of 3 independent experiments.

buffer caused a more obvious fluorescence ratio (F_{340}/F_{380}) drop of the mag-Fura-2 in intracellular store, then the second addition of 50 μ M H₂O₂ caused a further, but slightly smaller, drop in the fluorescence ratio. Further addition of 100 μ M H₂O₂ did not cause any additional drop, indicating the internal stores are fully opened.

Fig. 4. Heparin inhibit IP_3 -trigged calcium release from intracellular calcium store. (a) 1 μ M IP_3 was added into the cell-perfusing Ca²⁺-releasing medium caused the Ca²⁺ release from intracellular store. (b) In the presence of 10 μ g/ml heparin, addition of 1 μ M IP_3 in the cell-perfusing medium did not cause any drop in the mag-Fura-2 fluorescence. The drop in the mag-Fura-2 fluorescence ratio F_{340}/F_{380} in intracellular stores of the permeabilized cells represents the decrease of Ca²⁺ concentration in the stores.

34 Zheng, Shen

However, even at the higher concentration of 100 μ M, H₂O₂ can no longer induce any fluorescence ratio drop of the Ca²⁺ indicator in the permeabilized cells when heparin, the well-known antagonist of IP₃ receptor on ER membrane,²⁴ is present (curve 'b' in Fig. 3). The results clearly demonstrate that IP₃ receptor on ER calcium stores can be activated directly by H₂O₂, resulting in a Ca²⁺ release from the stores.

In order to confirm the specificity of heparin in inhibiting IP₃ receptor, its inhibitory effect on IP₃-triggered Ca²⁺ release from intracellular store in the permeabilized cells was also checked. The cells were permeabilized and exposed to IP₃ in the presence and absence of heparin. As shown in Figure 4, addition of 1 μ M IP₃ in the cell-perfusing medium caused a marked decrease of the fluorescence ratio of F₃₄₀ to F₃₈₀ associated with ER in the absence of heparin, indicating a release of the Ca²⁺ from the intracellular stores (curve 'a' in Fig. 4). However, almost no release of Ca²⁺ could be observed after addition of the same concentration of IP₃ when heparin was present (curve 'b' in Fig. 4). This indicates that heparin does block the IP₃ receptor and abolish the Ca²⁺ release from IP₃-operated calcium stores.

A thapsigargin-insensitive non-mitochondrial store might be involved in H_2O_3 -induced Ca^{2+} release

To identify if there is any other internal store from which H_2O_2 induces Ca^{2+} release, thapsigargin (TG), a potent endomembrane Ca^{2+} -ATPase inhibitor which can release Ca^{2+} from intracellular store with minimal disturbances of

Fig. 5. Effects of TG and FCCP on the H_2O_2 -induced cytosolic Ca²⁺ mobilization in Fura-2-loaded single living cells perfused with Ca²⁺-free buffer. The cytosolic Ca²⁺ concentration is represented as the ratio of the fluorescence excited at 340 nm, F_{340} , to the fluorescence excited at 380 nm, F_{380} , measured at 37°C. The kinetic curves are the average of those observed in 6 cells. (A) 2 x 10⁵ cells were plated into a glass-bottomed dish containing 1 ml of the Ca²⁺-free buffer, to which 1 μ M TG was added, followed by the addition of 1 mM H_2O_2 . (B) As (A) except for the replacement of TG with 2 μ M FCCP. (C) As (A) except for the replacement of TG with 1 μ M TG plus 2 μ M FCCP. (D) 2 x 10⁵ cells were plated into a glass-bottomed dish containing 1 ml of Ca²⁺-free buffer; 1 μ M TG was added after the cells were stimulated with 1 mM H_2O_2 .

other signaling mechanism,²⁵ and FCCP, a mitochondrial uncoupler which inhibits Ca2+ uptake through a mitochondrial uniporter by collapsing the mitochondrial proton gradient and dissipating the mitochondrial membrane potential,²⁶ were used to liberate Ca²⁺ from ER calcium stores and mitochondrial Ca2+ stores, respectively or simultaneously, in the cells perfused in Ca²⁺-free buffer. As shown in Figure 5A, when the calcium store in ER had been depleted by 1 µM TG in the Ca²⁺-free buffer, 1 mM H_2O_2 was still able to induce a rise in the cytosolic Ca^{2+} in the cells. A similar result was observed when FCCP was used to pre-treat the cells (see Fig. 5B). It was interesting to note that after a big transient rise in cytoplasmic Ca²⁺ concentration due to full depletion of the ER calcium stores by TG and uncoupling of mitochondria by FCCP, H₂O₂ could still induced a relatively low Ca²⁺ release (see Fig. 5C). This release might come from a store insensitive to either TG or FCCP. However, pre-exposure of cells to H₂O₂ abolished the Ca2+ releasing induced by TG in the absence of extracellular calcium (see Fig. 5D), which further confirms the conclusion drawn by a previous study that H₂O₂ can completely release the calcium in the TG-sensitive store.¹⁷ The results suggest that there might be some other Ca²⁺ store, that is neither TG-sensitive nor mitochondria-based, also responsible for H₂O₂-induced Ca²⁺ release.

DISCUSSION

Reactive oxygen species (ROS) cause tissue damage under ischemia/reperfusion, infection and other pronecrotic conditions. One of the earliest responses to severe oxidative stress is a stereotyped increase in cytosolic calcium. There have been a number of studies on the H₂O₂-induced elevation of cytosolic Ca²⁺ in a variety of cell types. In these previous investigations, PLC has been considered as a primary target for H₂O₂induced Ca2+ release from IP3-operated stores.18,27 However, only pharmacological intervention with PLC inhibitors was used, no direct measurement of IP₃ production in H₂O₂-exposed cells was performed. In the present study, both direct measurement of IP₃ production in the H₂O₂-exposed cells and a pharmacological intervention study with the selective PLC inhibitor U73122 were used to demonstrate the irrelevance of PLC activation in the H₂O₂-induced cytoplasmic Ca²⁺ mobilization in endothelial cells.

The fact that H_2O_2 -induced Ca^{2+} release but not PLC activation leads to a logical hypothesis that H_2O_2 may directly activate IP_3 receptor to open the channel on the intracellular calcium stores in endoplasmic reticulum. Our results show that H_2O_2 causes a dose-dependent decrease in the Ca^{2+} within the ER calcium store in the permeabilized cells. Such a decrease can be abolished by heparin. These data firmly demonstrate that activation of

 IP_3 receptor rather than production of IP_3 is responsible for the H₂O₂-induced Ca²⁺-release from IP₃-operated stores in endothelial cells. Recently, Uchida et al.28 identified a highly conserved cysteine-2613 residue located within the C-terminal of IP₃R, which is essential for channel opening. Similar to the present study, Favero et al.²⁹ demonstrated that H₂O₂ at millimolar concentrations could stimulate Ca2+ release from sarcoplasmic reticulum vesicles by direct activation of ryanodine receptors. Since IP₂ receptor shares many similarities with ryanodine receptor and it is also sensitive to oxidative stress, it might not be surprising to expect that H_2O_2 may also be able to activate IP₃ receptor in cells. The activation of IP₂ receptor might be due to a conformational change that opens the Ca²⁺ channel in the intracellular Ca²⁺ store.

In most cases of intracellular calcium mobilization, the cytoplasmic Ca^{2+} concentration returns to the resting level by re-uptake of Ca^{2+} into internal stores via Ca^{2+} -ATPase located on the ER membrane, as well as Ca^{2+} extrusion through the plasma membrane. The sustained elevation of cytosolic Ca^{2+} in H_2O_2 -exposed cells may be attributed to the inactivation of the Ca^{2+} -ATPase on either ER membrane¹⁷ or plasma membrane.^{30,31}

There is increasing evidence that the mitochondrion is an active participant in intracellular Ca2+ buffering and signaling.32 Its unique ability to rapidly accumulate and then release large quantities of Ca²⁺ by detecting cytoplasmic Ca²⁺ signals resulting from the discharge of the ER Ca²⁺ store. Conversely, both the buffering of the cytoplasmic Ca²⁺ and ATP production by mitochondria is predicted to influence the ER Ca²⁺ handling.^{14,15} The mitochondrial Ca2+ store has been also identified as another less critical source of the H2O2-induced Ca2+ release.^{17,33} In the present investigation, we found that H₂O₂ was still able to induce a Ca²⁺ release after pretreatment of the cells with both TG and FCCP. One of the novel conclusions from this study is that an unknown Ca²⁺ store, which is thapsigargin-insensitive and nonmitochondrial, might also account for the H₂O₂-induced Ca²⁺ release. Although it is known that the Ca²⁺ store within Golgi apparatus may respond to IP₂-producing agonists¹⁶ and functions in a thapsigargin-insensitive manner,³⁴ the nature of the TG-insensitive non-mitochondrial intracellular store is still unknown at the present time. The present investigation indicates that H₂O₂ could release Ca2+ from several intracellular stores.

CONCLUSIONS

 H_2O_2 induces Ca^{2+} release from the IP_3 -operated stores by direct activation of IP_3 receptor rather than production of IP_3 . It may open a new horizon to see the effects of H_2O_2 on cell functions in the view of calcium signaling.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (No. 30330250).

REFERENCES

- Stone JR, Collins T. The role of hydrogen peroxide in endothelial proliferative responses. *Endothelium* 2002; 9: 231–238.
- De Klaver MJ, Manning L, Palmer LA, Rich GF. Isoflurane pretreatment inhibits cytokine-induced cell death in cultured rat smooth muscle cells and human endothelial cells. <u>*Anesthesiology*</u> 2002; 97: 24–32.
- Jin N, Hatton ND, Harrington MA, Xia X, Larsen SH, Rhoades RA. H₂O₂-induced *egr-1, fra-1*, and *c-jun* gene expression is mediated by tyrosine kinase in aortic smooth muscle cells. *Free Radic Biol Med* 2000; **29**: 736–746.
- Orzechowski A, Lokociejewska M, Muras P, Hocquette JF. Preconditioning with millimolar concentrations of vitamin C or Nacetylcysteine protects L6 muscle cells insulin-stimulated viability and DNA synthesis under oxidative stress. <u>Life Sci 2002; 71:</u> 1793–1808.
- Krippeit-Drews P, Haberland C, Fingerle J, Drews G, Lang F. Effects of H₂O₂ on membrane potential and Ca²⁺_i of cultured rat arterial smooth muscle cells. *Biochem Biophys Res Commun* 1995; 209: 139–145.
- Doan TN, Gentry DL, Taylor AA, Elliott SJ. Hydrogen peroxide activates agonist-sensitive Ca²⁺-flux pathways in canine venous endothelial cells. *Biochem J* 1994; 297: 209–215.
- Whittemore ER, Loo DT, Watt JA, Cotman CW. A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. *Neuroscience* 1995; 67: 921–932.
- Wang X, Takeda S, Mochizuki S, Jindal R, Dhalla NS. Mechanisms of hydrogen peroxide-induced increase in intracellular calcium in cardiomyocytes. J Cardiovasc Pharmacol Ther 1999; 4: 41–48.
- Inanami O, Ohta T, Ito S, Kuwabara M. Elevation of intracellular calcium ions is essential for the H₂O₂-induced activation of SAPK/JNK but not for that of p38 and ERK in Chinese hamster V79 cells. *Antioxid Redox Signal* 1999; 1: 501–508.
- Sauer H, Diedershagen H, Hescheler J, Wartenberg M. Calciumdependence of hydrogen peroxide-induced *c-fos* expression and growth stimulation of multicellular prostate tumor spheroids. <u>FEBS</u> Lett 1997; **419**: 201–205.
- Niwa K, Inanami O, Yamamori T *et al.* Roles of protein kinase C delta in the accumulation of p53 and the induction of apoptosis in H₂O₂-treated bovine endothelial cells. *Free Radic Res* 2002; **36**: 1147–1153.
- Putney JWJ, Broad LM, Braun FJ, Lievremont JP, Bird GS. Mechanisms of capacitative calcium entry. <u>J Cell Sci 2001</u>; 114: 2223–2229.
- Berridge MJ, Lipp P, Bootman MD. The calcium entry pas de deux. Science 2000; 287: 1604–1605.
- Murchison D, Griffith WH. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium calcium exchanger in rat basal forebrain neurons. *Brain Res* 2000; 854: 139–151.
- Landolfi B, Curci S, Debellis L, Pozzan T, Aldebaran M, Hofer AM. Ca²⁺ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured *in situ* in intact cells. *J Cell Biol* 1998; **142**: 1235–1243.
- Pinton P, Pozzan T, Rizzuto R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca²⁺ store with functional properties

distinct from those of the endoplasmic reticulum. <u>EMBO J 1998</u>; **17**: 5298–5308.

- Pariente JA, Camello C, Camello PJ, Salido GM. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. <u>J Membr Biol</u> 2001; **179**: 27–35.
- Gonzalez-Pacheco FR, Caramelo C, Castilla MA *et al*. Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma. <u>Nephrol Dial Transplant</u> 2002; 17: <u>392–398.</u>
- Oba T, Ishikawa T, Yamaguchi M. Sulfhydryls associated with H₂O₂-induced channel activation are on luminal side of ryanodine receptors. *Am J Physiol* 1998; **274**: C914–C921.
- Az-ma T, Saeki N, Yuge O. Cytosolic Ca²⁺ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca²⁺ channels. *Br J Pharmacol* 1999; **126**: 1462–1470.
- Tsien RY, Rink TJ, Poenie M. Measurement of cytosolic free Ca²⁺ in individual small cells using fluorescence microscopy with dual excitation wavelengths. *Cell Calcium* 1985; 6: 145–157.
- Liu J, Liu Z, Chuai S, Shen X. Phospholipase C and phosphatidylinositol 3-kinase signaling are involved in the exogenous arachidonic acid-stimulated respiratory burst in human neutrophils. *J Leukoc Biol* 2003; **74**: 428–437.
- Hu Q, Zheng G, Zweier JL, Deshpande S, Irani K, Ziegelstein RC. NADPH oxidase activation increases the sensitivity of intracellular Ca²⁺ stores to inositol 1,4,5-trisphosphate in human endothelial cells. *J Biol Chem* 2000; 275: 15749–15757.
- Ehrlich BE, Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. <u>Nature 1988</u>; 336: 583–586.
- Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺ ATPase. *Proc Natl Acad Sci USA* 1990; **87**: 2466–2470.
- Medler K, Gleason EL. Mitochondrial Ca²⁺ buffering regulates synaptic transmission between retinal amacrine cells. <u>J Neurophysiol</u> 2002; 87: 1426–1439.
- Volk T, Hensel M, Kox WJ. Transient Ca²⁺ changes in endothelial cells induced by low doses of reactive oxygen species: role of hydrogen peroxide. *Mol Cell Biochem* 1997; **171**: 11–21.
- Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. Critical regions for activation gating of the inositol 1,4,5trisphosphate receptor. *J Biol Chem* 2003; 278: 16551–16560.
- Favero TG, Zable AC, Abramson JJ. Hydrogen peroxide stimulates the Ca²⁺ release channel from skeletal muscle sarcoplasmic reticulum. *J Biol Chem* 1995; **270**: 25557–25563.
- Zaidi A, Barron L, Sharov VC, Schoneich C, Mochaelis EK, Michaelis ML. Oxidative inactivation of purified plasma membrane Ca²⁺-ATPase by hydrogen peroxide and protection by calmodulin. *Biochemistry* 2003; 42: 12001–12010.
- Rosado JA, Sage SO. Regulation of plasma membrane Ca²⁺-ATPase by small GTPases and phosphoinositides in 7 human platelets. <u>J Biol</u> <u>Chem</u> 2000; **275**: 19529–19535.
- Medler K, Gleason EL. Mitochondrial Ca²⁺ buffering regulates synaptic transmission between retinal amacrine cells. *J Neurophysiol* 2000; 87: 1426–1439.
- Ichimiya M, Chang SH, Liu H, Berezesky IK, Trump BF, Amstad PA. Effects of Bcl-2 on oxidant-induced cell death and intracellular Ca²⁺ mobilization. *Am J Physiol* 1998; **275**: C832–C839.
- 34. Van Baelen K, Vanoevelen J, Missiaen L, Raeymaekers L, Wuytack F. The Golgi PMR1 P-type ATPase of *Caenorhabditis elegans*: identification of the gene and demonstration of calcium and manganese transport. *J Biol Chem* 2001: **276**: 10683–10691.