Crystallization and Preliminary X-Ray Diffraction Analysis of Three Mastoparans

Feng Wang1,2,§, Xiaqin Liu1,§, He Li1,2, Xianjun Lang1, Hui Peng3, Shenquan Liu1 and Tao Jiang1,*

1National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; 2Graduate School of the Chinese Academy of Sciences, PR China; 3The College of Life Sciences, Guangxi normal university, PR China

Abstract: Mastoparans are tetradecapeptides found to be the major component of wasp venoms. These peptides possess a variety of biological activities. Three related mastoparans, mastoparan from Polistes jadwagae (MP-PJ), mastoparanX (MP-X) and its carboxyl-free C-terminal form (MP-X-COO’), were crystallized. X-ray diffraction data for them were collected at resolutions of 1.2 Å, 2.0 Å and 3.3 Å respectively.

Keywords: Crystallization, preliminary, X-ray diffraction, mastoparan toxins.

INTRODUCTION

Mastoparan toxins are tetradecapeptides reported to be the major peptides in many species of wasps. They have a variety of biological activities. Mastoparans can induce secretion of neurotransmitters [1], hormones [2-4] and cytokines [5] in different types of cells. They can promote histamine release from mast cells [6], and some of these peptides also exhibit potent hemolytic activity [7, 8] and antimicrobial activity [9].

The mechanism underlying the various activities of mastoparans is complicated and has not been clarified. It is generally agreed that the activities of mastoparan involve heterotrimeric G-protein by mimicking the intracellular cationic amphiphilic G protein binding domains of GPCRs in a pertussis toxin-sensitive manner [10]. Moreover, the mechanism of independent G protein is also suggested. Mastoparan has been reported to inhibit Ca2+-ATPase [11] and to inhibit K-ATP channels [12] in a G protein-independent manner which can lead to depolarization and Ca2+ influx through L-type Ca2+ channels. Mastoparan induces Ca2+ influx, which is independent of L-type Ca2+ channels [13] and which may result from activation of Ca2+-permeant nonselective cation channels [14]. The antimicrobial activity of mastoparan is also reported to be related to membrane permeability [15].

As the function of mastoparan was suggested to be related to its interactions with membrane, G protein or calmodulin, structural studies have been carried out on mastoparans with such substances mainly by nuclear magnetic resonance (NMR) spectroscopy [16-20]. It has been shown that mastoparans exhibit a random coil form in aqueous solution, whereas in trifluoroethanol-containing aqueous solution they will adopt an amphiphilic α-helix conformation [21]. Mastoparan has also received attention because analogues which have a free carboxyl-terminus differ in biological activity from those which have an amidated C-terminus [22-25]. In order to provide further insights into the conformational characteristics of mastoparans, crystallization of mastoparan analogue, eumenine mastoparan, in 50% trifluoroethanol-containing aqueous solution was reported [26, 27]. However, the crystal structure of mastoparan itself has not yet been reported.

Mastoparan from Polistes jadwagae (MP-PJ, VDKHQHLSVL-NH2) and mastoparanX (MP-X, INWKGLIAMAKKLL-NH2) are the major characteristic mastoparans with various types of activity [28-31]. To better understand the conformational differences of mastoparan in different solvent environments and to reveal the functional role of the C-terminus, attempts to crystallize different kinds of mastoparans were carried out in our laboratory. The present work reports the crystallization and preliminary crystallographic study of three mastoparans, MP-PJ, mastoparanX and its carboxyl-free C-terminal form(MP-X-COO’) all in aqueous solute without lipid or trifluoroethanol.

MATERIALS AND METHODS

1. Crystallization

The MP-PJ used in the experiments was purchased from Sigma Corp., without further purification and directly dissolved in distilled water at a concentration of 7 mg/ml. An initial screening of crystallization conditions using crystal screens 1 and 2 (Hampton Research) was attempted. Crystals were obtained both with the hanging-drop and sitting-drop vapor-diffusion methods, but were twinned most of the time. Single crystals suitable for X-ray analysis were obtained in about 3 days at 18°C containing 1.5 µl of MP-PJ solution (7 mg/ml) mixed with 1 µl reservoir solution and another 1 µl distilled water (Table 1). The MP-X-NH2 and MP-X-COO’ were synthesized by AC Scientific Inc.(Xi’an, China) with purity of about 98%. They were also directly dissolved in distilled water at concentrations of 3 mg/ml and 7 mg/ml.
Figure 1. a) A photomicrograph of a rectangular layer-shaped crystal of MP-PJ suitable for X-ray diffraction experiments, with average dimensions of about 0.05x0.05x0.1mm. b) and c) are the photomicrographs of the crystals of MP-X-NH$_2$ and MP-X-COO$^-$ with suitable dimensions for X-ray diffraction experiments.

Table 1. Crystallization Conditions of Mastoparans

<table>
<thead>
<tr>
<th></th>
<th>MP-PJ</th>
<th>MP-X-NH$_2$</th>
<th>MP-X-COO$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample solution(A)</td>
<td>7mg/ml</td>
<td>7mg/ml</td>
<td>3mg/ml</td>
</tr>
<tr>
<td>Reservoir solution(B)</td>
<td>0.06 M ammonium sulfate, 0.1M sodium cacodylate pH 6.5, 24% polyethylene glycol (PEG) 1500</td>
<td>0.2M ammonium sulfate 30%PEG MME 2000 0.1M sodium acetate pH 4.6</td>
<td>0.7M ammonium sulfate 0.1M sodium citrate pH 6.0</td>
</tr>
<tr>
<td>Drop</td>
<td>1.5µl A+1µl H$_2$O+1µl B</td>
<td>1µl A+1µl B</td>
<td>2µl A+2µl B</td>
</tr>
<tr>
<td>temperature(ºC)</td>
<td>18</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>growth time</td>
<td>3 days</td>
<td>4 months</td>
<td>4 days</td>
</tr>
<tr>
<td>crystal dimensions</td>
<td>0.05x0.05x0.1mm</td>
<td>0.06x0.1x0.1mm</td>
<td>0.1x0.1x0.1mm</td>
</tr>
</tbody>
</table>

respectively. Crystals were obtained with hanging-drop vapor-diffusion. For MP-X-COO$^-$, single crystals were obtained in about 4 days at 16ºC, and for MP-X-NH$_2$, single crystals were obtained in about 4 months at 18ºC (Table 1).

2. Data Collection and Processing

X-ray diffraction data of MP-PJ were collected at 100K with paratone-N (Hampton Research Corp.) as cryo-protection and at a wavelength of 0.90Å using the Synchrotron Radiation on BSRF (beamline 3W1A of the Beijing Synchrotron Radiation Facility). With an oscillation range of 2.0º, 180 images were collected and the raw x-ray diffraction data were processed to 1.20Å resolution using the program DENZO and scaled with the program SCALEPACK [32]. Detailed data-collection statistics are shown in Table 2.

RESULTS AND DISCUSSION

The crystals of MP-PJ belong to space group P2$_1$, with unit cell parameters of a=22.13Å, b=59.38Å, c=37.26Å, and β=101.3º. Assuming there are six or eight peptides in an asymmetric unit, with a molecular weight of 1635 Dalton each, the possible calculated solvent contents of the crystals is 49% for 6 monomers and 33% for 8 monomers.

The data of MP-X-NH$_2$ and MP-X-COO$^-$ were obtained using a home diffraction system of FR-E (Biophysics Institute of CAS, Beijing, China) with paratone as cryo-protection and at a temperature of 79 K. Using an oscillation range of 2.0º for both, 70 and 100 images were collected respectively. The data were processed using the program CrystalClear [33] and the results are listed in Table 2.

The crystals of MP-X-NH$_2$ and MP-X-COO$^-$ both had hexagonal Laue symmetry with cell parameters of a=b=34.96Å, c=60.52Å, $\alpha=\gamma=90^\circ$, $\beta=120^\circ$ and a=b=82.83Å, c=51.97Å, $\alpha=\gamma=90^\circ$, $\beta=120^\circ$, respectively. Based on the self-rotation Patterson map, MP-X-NH$_2$ crystals have an obvious 2-fold symmetric axis in the ab directions and therefore belong to the space group P622 with one molecule in an asymmetric unit.

We tried molecular replacement method using the MOLREP of CCP4 [34] program package to solve these structures, however, no solution was apparent by using the NMR structures (PDB code 1A13, 1D7N) of mastoparan as models. Further attempts to solve these structures by the multiple isomorphous anomalous scattering (MAD) methods are in progress.
ACKNOWLEDGEMENTS

We are grateful to Dr. Yuhui Dong and Dr. Peng Liu for the data collection on BSRF. This work was supported by Ministry of Science and Technology of the People’s Republic of China (2004CB520801 and 2004CB720000), and the National Natural Science Foundation of China (30300065).

REFERENCES

Table 2. Summary of Data Collection Statistics of Mastoparans

<table>
<thead>
<tr>
<th>Space group</th>
<th>MP-PJ</th>
<th>MP-X-NH₃</th>
<th>MP-X-COO</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₂₁</td>
<td>P₆₂₂</td>
<td>P₆</td>
<td></td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>22.13, 59.38, 37.26</td>
<td>34.96, 34.96, 60.52</td>
<td>82.83, 82.83, 51.97</td>
</tr>
<tr>
<td></td>
<td>90.00, 101.29, 90.00</td>
<td>90.00, 90.00, 120.00</td>
<td>90.00, 90.00, 120.00</td>
</tr>
<tr>
<td>Resolution range(Å)</td>
<td>30.0-1.20(1.24-1.20)</td>
<td>27.08-2.10(2.18-2.10)</td>
<td>29.52-3.20(3.31-3.20)</td>
</tr>
<tr>
<td>Total number of reflections</td>
<td>180667</td>
<td>36384</td>
<td>22051</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>27689</td>
<td>1643</td>
<td>3438</td>
</tr>
<tr>
<td>Average redundancy</td>
<td>6.52(6.18)</td>
<td>22.14 (22.92)</td>
<td>6.41(6.51)</td>
</tr>
<tr>
<td>% completeness</td>
<td>93.7(89.0)</td>
<td>94.9 (93.7)</td>
<td>99.7(100.0)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.047(0.256)</td>
<td>0.101(0.471)</td>
<td>0.243(0.562)</td>
</tr>
<tr>
<td>Output <I/sigI></td>
<td>46.2(5.7)</td>
<td>17.9 (6.5)</td>
<td>4.2(2.0)</td>
</tr>
</tbody>
</table>

Note: Values in brackets are for the last resolution shell.