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ABSTRACT: The conjugate-gradient (CG)-based non-Cartesian SENSE reconstruction
usually exhibits unstable convergence behavior due to the ill conditioning of the general-
ized encoding matrix (GEM). To overcome this difficulty, an improved iterative SENSE
approach is presented. During a so-called Lanczos iteration process, which is equally
efficient as CG, the inversion of GEM can be gradually approximated by calculating
inversions of a series of small tridiagonal matrices. In this fashion, inner regularization can
be incorporated into the reconstruction without touching the iteration process. The degree
of regularization can be determined based on the eigenvalue information provided by the
Lanczos process. With inner regularization adaptively applied for every iteration vector, the
convergence behavior of iterative SENSE can be significantly improved and noise amplifi-
cation can be avoided. The feasibility of this novel iterative SENSE technique is demon-
strated by radial and spiral MRI experiments. © 2007 Wiley Periodicals, Inc. Concepts Magn

Reson Part B (Magn Reson Engineering) 31B: 44–50, 2007
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INTRODUCTION

In parallel imaging, the difference in coil sensitivities
between individual coil elements in a receive array is
exploited for spatial encoding as a supplement to
conventional gradient encoding. In this way, the num-
ber of gradient encoding steps can be reduced and,
consequently, the MRI scanning can be accelerated.
In contrast to conventional pure Fourier reconstruc-
tion, parallel MRI reconstruction inevitably involves

inversion problems due to the mixed encoding
scheme. This brings two significant concerns in image
reconstruction. First, computational complexity is in-
creased dramatically because inversion can no longer
be performed merely by FFT; second, the problem of
ill conditioning arises because coil sensitivities encod-
ing in general introduces irregularity into the encod-
ing matrix. For regularly undersampled Cartesian k-
space trajectories, a number of practical and efficient
strategies have been reported to minimize these diffi-
culties during the past few years, such as sensitivity
encoding (SENSE) (1), simultaneous acquisition of
spatial harmonics (SMASH) (2–5), parallel imaging
with localized sensitivities (PILS) (6 ), sensitivity pro-
files from an array of coils for encoding and recon-
struction in parallel (SPACE RIP) (7 ), and general-
ized autocalibrating partially parallel acquisition
(GRAPPA) (8 ). In various manners and to different
extents, these techniques can successfully “decouple”
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the sensitivity encoding from Fourier encoding, and
then decoding can be performed by combination of
FFT and inversion of small-size matrices. However,
when parallel MRI is employed with non-Cartesian
trajectories, reconstruction is much more a problem
because it is difficult to separate different encoding
schemes, and straightforward inversion of the gener-
alized encoding matrix (GEM) is seriously hindered
by its numerical complexity.

The iterative SENSE reconstruction strategy pro-
posed by Pruessmann and Kannengiesser (9–11) is an
advanced parallel imaging technique for arbitrary k-
space trajectories. The basic idea of iterative SENSE
is to invert the large GEM using the conjugate gradi-
ent (CG) iteration method and to implement the most
time-demanding matrix vector multiplication with a
highly efficient gridding/FFT process. Using this CG-
based iterative technique, numerical complexity of the
inversion of GEM can be greatly reduced and recon-
structions become feasible. However, the ill-condi-
tioning problem has not been well addressed in
Pruessmann’s report. In general, ill conditioning of
the GEM affects the convergence behavior of CG
iteration and causes instability in reconstruction.
More specifically, in many cases the iteration exhibits
a semiconvergence behavior, that is, the iteration vec-
tor initially approaches the desired exact solution and
then, in later stages of the iteration, converges to some
other undesired vector.

It is well known that ill-conditioning problems can
be overcome or mitigated by regularization tools. In
previous works, some popular regularization tech-
niques, such as Tikhonov regularization and truncated
singular value decomposition (SVD), have been ap-
plied in SENSE and SMASH to improve SNR of
Cartesian parallel imaging (3, 12, 13). Recently,
methods of performing explicit Tikhonov regulariza-
tion with generalized CG-SENSE were also reported
(14).

To address the ill-conditioning problem in non-
Cartesian SENSE, in this study an improved iterative
reconstruction technique is proposed. During a so-
called Lanczos iteration process, which is equally
efficient as CG, the inversion of GEM can be gradu-
ally approximated by calculating inversions of a series
of small tridiagonal matrices (15–17). In this fashion,
regularization can be easily incorporated into the re-
construction. Because regularization can be flexibly
employed in each iteration loop independently, this
strategy is known as inner regularization. Inner regu-
larization does not affect the iteration process and the
convergence behavior. Therefore, it can stabilize the
reconstruction without increasing the running time.
Mathematic principles and implementation issues of

this improved iterative SENSE technique are de-
scribed in this article. The effect of inner regulariza-
tion to stabilize the reconstruction is demonstrated by
phantom and in vivo MRI experiments.

THEORY

Review of CG-Based Iterative SENSE
Reconstruction

Generally, parallel imaging reconstruction can be
simply formulated as a linear equation system

s � Em, [1]

where s is the vector of signal samples, m is the vector
of the unknown image, and E is the GEM composed
of gradient encoding and coil sensitivity encoding.

The least squares estimate of Eq. [1] can be ob-
tained by solving the normal equation, which reads:

�EHE�m � EHs, [2]

where the superscript H denotes the complex conju-
gate transpose.

Directly solving Eq. [2] is numerically prohibitive,
instead, it is feasible to perform reconstruction itera-
tively (9–11). Using the highly efficient CG iteration
scheme, the coefficient matrix is only accessed via
matrix-vector multiplications, and a sequence of iter-
ation vectors is produced that converge to the least
squares solution. In each CG loop, the most time-
consuming matrix-vector multiplication can be effi-
ciently implemented by a combination of gridding
principle and FFT. Furthermore, for faster conver-
gence, optional density and intensity correction can be
introduced to precondition the coefficient matrix.

The main drawback of this method is its conver-
gence behavior. Usually, the coefficient matrix is
rather large and notoriously ill conditioned due to the
mixed encoding scheme. As a consequence, the iter-
ation process does not converge stably to the exact
solution. Typically, in early stages of iteration the
reconstruction goes well, while noise amplification
tends to arise and become more and more serious after
a number of iteration loops. This phenomenon hinders
automatic implementation of the non-Cartesian
SENSE technique.

Lanczos Iteration Process

In this work we propose a novel iterative SENSE
reconstruction strategy based on Lanczos method.
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Simply speaking, the principle of this algorithm is to
project a large Hermitian matrix onto a set of suitably
chosen orthogonal vectors by an iteration process so
that it is reduced to a much smaller ( j � 1) � ( j �
1) matrix with j denoting the iteration count. In
SENSE reconstruction, Lanczos method is applied to
the normal equation form in Eq. [2]. Let A � EHE is
an n-by-n Hermitian matrix; the stepwise nature of the
Lanczos process results in a tridiagonal matrix Tj and
in a unitary matrix Qj � [q1, q2, . . . qj] after j steps
of the process, which are related as

AQj � QjTj � �jqj�1ej
T [3]

where ej is the jth axis vector. �j decreases with j and
�j 3 0 when j 3 rank( A). An explicit algorithm of
Lanczos method is stated in the appendix.

The Lanczos iteration process converges as fast as
the CG method (i.e., �j decreases to zero quickly). In
practice, after a small number of iteration loops ( j ��
n), �j becomes numerically negligible, such that Eq.
[3] becomes

A � QjTjQj
H

and since Qj is a unitary matrix, inverse of A can be
simplified as

A�1 � Qj�Tj�
�1Qj

H [4]

let

mj � Qj�Tj�
�1Qj

HEHs [5]

from Eq. [3] and Eq. [4] we see that mj approaches the
least squares solution mLS along with the iteration.

Because j �� n, inverse of Tj is numerically
cheap. Therefore, almost all of the computation effort
lies in the Lanczos iterations, which, like the CG
method, involve matrix-vector multiplications. Fol-
lowing (11), in our implementation this is also accom-
plished by combination of FFT and gridding princi-
ple.

Numerically, the Lanczos process is equally effi-
cient as a typical CG algorithm (15). However, the
Lanczos method holds a unique desirable property:
the eigenvalues, or singular values (SV), of A are
gradually captured in decreasing order by the small
tridiagonal matrix Tj, that is, the j eigenvalues of Tj

are approximations of the j largest eigenvalues of A,
with higher accuracy for larger eigenvalues and more
iteration cycles (15). This provides the possibility to
control the iteration progress by monitoring the eig-

envalues of the resulted Tj. Along the progress of
iteration, large eigenvalues are more accurately cap-
tured, while more small eigenvalues appear. Stopping
criterion can then be established, for example, based
on max(SV)/min(SV), which reflects the condition of
Tj, as iteration should be stopped before Tj becomes
too much ill posed. In addition, the eigenvalue infor-
mation can be used as a reference to decide the degree
of regularization applied to the inversion, because
regularization is essentially manipulating the SVs of
the matrix to be inverted.

Inner Regularization

Taking advantage of the property of the Lanczos
process, regularization can be applied only for inver-
sion of Tj in Eq. [5]. Because the eigenvalues of A are
captured by Tj in decreasing order, regularization by
directly manipulating the SV components in (Tj)

�1 is
obvious. In this study we set a SV threshold and
simply disregard all the SV components below that
threshold.

Assume Tj � ¥i�1
j ui	i
i

T is its SVD, then (Tj)
�1

� ¥i�1
j 
i	i

�1ui
T, regularization by SVD truncating

yields (Tj)(reg)
�1 � ¥	i�threshold 
i	i

�1ui
T. Throughout

this study, the SV threshold is set to 1% of the largest
SV.

With inner regularization, the intermediate solution
for the j-th iteration then reads

mj � Qj�Tj��reg�
�1 Qj

HEHs.

Implementation

This novel method is based on Lanczos iteration pro-
cess and inner regularization. Lanczos process pro-
vides the possibility to apply inner regularization into
the inverse without touching the iterations; mean-
while, it provides eigenvalue information to deter-
mine the degree of regularization. With inner regular-
ization adaptively applied for every iteration vector,
the process converges stably to the regularized solu-
tion. In practice, to avoid waste of computation cost,
the iteration is stopped when max(SV)/min(SV) ex-
ceeds a condition number threshold (set to 300 in this
study). Then regularization was applied to the final
iteration result by eliminating the small eigenvalue
components.

In summary, this improved iterative SENSE tech-
nique consists of three key procedures: Lanczos pro-
cess, SVD of Tj, and regularization to the final itera-
tion result. The flowchart of implementing this
method is shown in Fig. 1, where the gridding/FFT
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process, which is equivalent to multiplication by
EHE, is adopted from Fig. 1 in (11).

METHODS

MRI Experiments

To demonstrate the performance of this improved
non-Cartesian SENSE reconstruction method, two
most popular non-Cartesian trajectories, spiral and
radial trajectories, were used in this work. Radial
experiments were performed on a 1.5T SIEMENS
Symphony system, and spiral data were acquired on a
Siemens 3T Trio scanner. In either case, a body coil
was used as transmit coil and an eight-element head
coil array was employed as receive coil.

Transverse phantom imaging was conducted with a
homogeneous sphere phantom. For radial acquisition,
a siemens true-FISP radial sequence was used. A total
of 128 projections were acquired with 256 samples in
each projection. The acquisition parameters were
FOV � 200 � 200 mm, slice thickness � 5 mm,
TE � 3.4 ms, TR � 53.5 ms, flip angle � 90°,
matrix � 128 � 128. For spiral acquisition, a 2D
spiral sequence was used (FOV � 200 � 200 mm2,
slice thickness � 3 mm, TR � 3 s, flip angle � 80°).
A full dataset with four interleaves for 128 � 128
imaging was acquired. In the readout direction, 3,908
samples were acquired for each interleaf with stan-
dard sampling density.

Axial brain MRI data were acquired using the
same radial and spiral sequences. For radial acquisi-
tion, 256 projections were scanned with 256 samples
per projection. FOV � 220 � 220 mm, slice thick-
ness � 5 mm, TE � 3.4 ms, TR � 53.5 ms, flip
angle � 70°, matrix � 128 � 128. For spiral acqui-

sition, the scanning parameters were the same as in
the phantom imaging.

Reconstruction

Iterative SENSE reconstructions based on the Lanc-
zos process were performed with the radial and spiral
data. For phantom data, conventional CG-based re-
constructions were also performed for comparison.
Matrix-vector multiplications were performed using
the gridding/FFT procedure, whereas gridding was
implemented using the LS-nuFFT method (18, 19).
Density correction was applied in the iteration loops
for preconditioning. The full datasets were evenly
decimated in the interleaf or projection direction to
simulate accelerated cases. The sensitivity profiles
were calibrated using the densely sampled central
regions of the radial and spiral k-spaces, as described
in (20). All algorithms were implemented offline on a
Pentium M 1.5 GHz PC with 512 MB RAM.

RESULTS

The reconstructed phantom image quality from 8X
accelerated radial data (16 projections) and 2X accel-
erated spiral data (two interleaves) varying with iter-
ation count is shown in Figs. 2(a) and 2(b), respec-
tively. The image quality (reconstruction error) is
measured by

err� j� � �
n

��In� j� � In
ref��,

where In( j) is the image resulted after j iterations with
n denoting the pixel index; In

ref is the reference image
reconstructed from the corresponding full datasets.

Figure 1 Implementation flowchart of the improved iterative SENSE reconstruction.
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The solid lines are the result of conventional CG-
based method, and the dashed ones are their counter-
parts using the Lanczos process with inner regulariza-
tion. The curves clearly show that without
regularization, the CG iteration does not converge
stably. The image quality improves with the iterations
in early stages but deteriorates in later stages. With
the inner-regularization strategy applied in every
loop, the convergence behavior of the reconstruction
is significantly improved, as shown by the dashed
lines.

Figure 3 shows the 8X accelerated radial phantom
images after 30 iterations using the conventional CG
method (see Fig. 3a) and using inner regularization
(see Fig. 3b), respectively. Observe that the resulted
image after 30 CG iterations is seriously contaminated
by noise, whereas the inner regularization results ex-
hibit excellent compromise between noise and arti-
facts. Similar facts can be observed in Fig. 4, which

correspond to the 60-iteration reconstruction of 2X
accelerated spiral phantom imaging.

The improved iterative SENSE reconstructions
with automatic stopping rule and inner regularization
were implemented with in vivo data, and the results
are shown in Figs. 5–7. Figure 5 shows the evolving
of some singular values of Tj in the Lanczos processes
of the reconstructions of radial (see Fig. 5a) and spiral
(see Fig. 5b) head images. The solid lines show the
largest five SVs and the dotted lines represent the
smallest SVs. As predicted in the theory section, SVs
are gradually grasped in decreasing order of magni-
tude. The large SVs are more accurately captured;
meanwhile, more small SVs appear with the iteration,
showing worsening condition in the progress of the
reconstruction. For the 8X SENSE radial reconstruc-
tion, max(SV)/min(SV) exceeded 300 after 25 itera-
tions, where the Lanczos process was stopped, and the
resulted image is shown in Fig. 6(a), which suffers
from minor noise amplification. Inner regularization

Figure 2 Plot of reconstruction errors against the iteration count for SENSE reconstructed
phantom images with (a) radial trajectories and (b) spiral trajectories. The solid lines show the
results of conventional CG-based reconstruction; the dashed lines represent the results using
Lanczos process with inner regularization applied in every iteration.

Figure 3 Thirty-iteration reconstructions of 8X acceler-
ated radial phantom images using the conventional CG-
based method (a) and using the inner-regularization tech-
nique (b).

Figure 4 Sixty-iteration reconstructions of 2X accelerated
spiral phantom images using the conventional CG-based
method (a) and using the inner-regularization technique (b).
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is then applied, and the final image is shown in Fig.
6(b). For the 2X SENSE spiral reconstruction, the
process was stopped after 43 iterations. Correspond-
ing results with and without inner regularization are
shown in Figs. 7(a) and 7(b), respectively.

Comparing the two pairs in Figs. 6 and 7, it can be
observed that SNR is significantly improved by inner
regularization at a modest cost of artifacts increase.
This demonstrates that the inner regularization tech-
nique proposed in this study can automatically
achieve good compromise between SNR and artifacts,
thus improving the overall image quality for non-
Cartesian SENSE imaging.

DISCUSSION

It has been demonstrated that inner regularization can
stabilize the iteration SENSE reconstruction and im-

prove the SNR of the final images. In our experience,
quality of non-Cartesian SENSE reconstruction is
highly dependent on the degree of regularization.
Overregularization tends to cause high level artifacts,
whereas underregularization cannot prevent the noise
booming in later iterations. The importance of Lanc-
zos process in our strategy is that it provides eigen-
value information, which helps to apply inner regu-
larization in an appropriate extent adaptively.

CONCLUSION

An improved algorithm for iterative SENSE recon-
struction has been proposed. Based on the Lanczos
iteration process, inner regularization can be applied
adaptively to stabilize the reconstruction and avoid
noise amplification. In practice, this algorithm is im-

Figure 6 Iterative reconstructions of 8X-SENSE radial
head images. (a) Immediate result upon the stop of iteration
without regularization. (b) Result with truncated SVD reg-
ularization applied after iteration stops.

Figure 5 Evolution of some singular values of Tj in the Lanczos processes for the reconstructions
of radial (a) and spiral (b) head images. The solid lines show the largest five SVs, and the dotted
lines represent the smallest SVs. The vertical dashed lines mark the positions where the process
should be stopped based on the max(SV)/min(SV) criterion (25 iterations for the radial case and 43
iterations for the spiral case).

Figure 7 Iterative reconstructions of 2X-SENSE spiral
head images. (a) Immediate result upon the stop of iteration
without regularization. (b) Result with truncated SVD reg-
ularization applied after iteration stops.
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plemented as a combination of Lanczos process, SVD
monitoring, and SVD truncating. The feasibility of
this novel iterative SENSE technique has been dem-
onstrated by radial and spiral MRI experiments.
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APPENDIX

Given a starting vector b and a subroutine for matrix-
vector multiplication y � Ax for any x, where A is an
n-by-n Hermitian matrix. The following algorithm
computes a tridiagonal matrix

T � �
�1 �1 0
�1

· · ·
· · ·· · ·
· · · �n�1

0 �n�1 �n

�
and a unitary Q such that A � QTQH (16 ).

q0 � 0; �0 � 0;
q1 � b/�b�2;
for j � 1 to n
y � Aqj;

�j � qj
Hy;

y � y � �j qj � �j�1qj�1;
�j � � y�2;
if �j � 0, quit; end
qj�1 � y/�j;
end
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