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INTRODUCTION

Ionizable residues play key roles in biological processes involving proteins, including

ligand binding, protein–protein interaction, and protein folding and unfolding. For

example, the structure and function of many proteins are dependent on the protona-

tion equilibrium of ionizable residues. Most enzymes perform catalysis with the assis-

tance of ionizable residues that either act directly as acids, bases, and ligands, or less

directly through effects on the electrostatic potential at or near the active site.1 The dis-

tribution of surface-charged residues is critical for protein–protein association.2 Many

proteins denature when the pH is changed to very low or very high values. The primary

reason for denaturation at extreme pH is that proteins usually have buried residues

with highly perturbed pKa values.3

Knowledge of the pKa values of ionizable residues enables the prediction of the pro-

tonation state at a given pH, which is often essential in the prediction of protein prop-

erties.4 However, it is also well recognized that structural and environmental features of

the protein can influence the protonation state. For example, pKa values of solvent-

exposed carboxylic residues show little variation and have relatively narrow distribu-

tions, while pKa values for buried residues can range from 2 to 6.7.5 Considering these

factors, it is not surprising that many experimentally determined pKa values are very

different from those derived from model compounds in solution. These effects are

referred to as perturbations of the pKa values, and present a significant barrier to accu-

rate prediction of protein properties.

The pKa values of ionizable residues can be determined experimentally by nuclear

magnetic resonance (NMR), but the applicability of this technique is limited by protein

size and solubility.6–10 On the other hand, there has been a great deal of activity in

the fields of computational biology and computational chemistry aimed at developing

theoretical methods for calculation of pKa values in proteins. Most of these theoretical

methods employ various treatments to give quantitative descriptions of electrostatic

effects, such as free-energy perturbation (FEP) approaches,11 protein dipole Langevin

dipole (PDLD) and PDLD/S-LRA approaches,12,13 Tanford Kirkwood (TK)14 and

modified TK models,15 as well as popularly applied Poisson Boltzmann (PB)

approaches,16 which have been described a lot in reviews4,12,16–19 and other

articles.11,13–15,20–33 These methods have given encouraging results that could pro-

vide useful insights into the structure–function correlator for proteins. However, the
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ABSTRACT

We propose a simple model

for the calculation of pKa

values of ionizable residues

in proteins. It is based on

the premise that the pKa

shift of ionizable residues is

linearly correlated to the

interaction between a partic-

ular residue and the local

environment created by the

surrounding residues. De-

spite its simplicity, the model

displays good prediction per-

formance. Under the sixfold

cross test prediction over a

data set of 405 experimental

pKa values in 73 protein

chains with known struc-

tures, the root-mean-square

deviation (RMSD) between

the experimental and calcu-

lated pKa was found to be

0.77. The accuracy of this

model increases with in-

creasing size of the data set:

the RMSD is 0.609 for gluta-

mate (the largest data set

with 141 sites) and �1 pH

unit for lysine, with a data

set containing 45 sites.
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results of macroscopic models depend critically on the

choice of protein dielectric constant whose concept is

problematic, while the microscopic models are entirely

practical but require professional treatment, which has

been provided by some research groups.4,19

Nowadays, with an increasing number of experimen-

tally available pKa values for proteins with known struc-

ture, prediction of pKa values by means of the empirical

parameterization of the protein pKa database becomes

feasible.5,34–36 These empirical methods yield a root-

mean-square deviation (RMSD) of �1 pH unit. This per-

formance is comparable to theoretical models, but is

achieved with greater speed and ease of use. Wisz and

Hellinga34 modeled solvent and interior effects using

multiple dielectric constants obtained by fitting to experi-

mental pKa values. Godoy-Ruiz et al.35 employed a

genetic algorithm to empirically parameterize pKa values

for carboxylic acids in proteins. Li et al.36 presented an

empirical method in a study of the molecular determi-

nants of pKa values of Asp and Glu in the protein turkey

ovomucoid third domain (OMTKY3). They took into

account three types of pKa perturbation: hydrogen bond-

ing, desolvation, and charge–charge interactions, in

which hydrogen bonds were identified as the prime pKa

determinant. However, the pKa values were determined

by changing the pH within a range centered on the pKa

value of the residue of interest, while hydrogen bonds

were identified based on the X-ray or NMR structure

determined at a given pH.

Here, we present a very simple model derived from

statistical theory to predict protein pKa values. It is based

on the premise that the pKa shift of ionizable residues in

proteins is linearly correlated to the interaction between

a given residue and its surrounding residues. Despite its

relative simplicity, the model is quite able to reproduce

experimental results. Its principal shortcoming is the de-

pendence on the size of the data set. The current data set

is too small to derive prediction coefficients for internal

residues that tend to have highly shifted pKa values and

are often catalytically important, and the coefficients

derived from surface residues are not suitable for extend-

ing the application in internal residues.

MATERIALS AND METHODS

The pKa database

A large collection of high quality experimental pKa val-

ues is essential to the development and assessment of this

new method. Researchers at the Edward Jenner Institute

have been maintaining a protein pKa database named

PPD (URL: http://www.jenner.ac.uk/PPD/), which is the

largest and the most comprehensive collection of experi-

mentally identified pKa values. Unfortunately, the PPD

web site does not provide a downloadable database in

flat text or other human-readable format. For conven-

ience, we recompiled a subset of experimental pKa values

derived from PPD.

By extracting pKa values from the PPD web site and

manually validating the data using experimental 3D

structures from PDB (URL: http://www.rcsb.org), we

obtained a subset of experimentally measured pKa values

containing 1122 pKa values belonging to 667 unique dis-

sociable sites (as of July, 2006). To minimize the side-

effect of potentially contradictory experimental data, we

filtered our data set based on the following rules: (a) pKa

values identified by NMR methods were accepted; (b)

pKa values for a single site differing by more than 1.0

when determined by separate experiments or a standard

deviation (SD) greater than 0.5 were filtered out; (c) pKa

values with a sequential number recorded in PPD incon-

sistent with that of PDB due to, for example, mutants or

lack of crystal data were also excluded. After filtration,

we obtained a collection of 475 unique sites located in 73

protein chains in which each site has only one experi-

mental pKa value assigned (if the site had multiple pKa

values, the average value was assigned instead), listed in

Table I. In the data set, the pKa values of 46 sites are un-

usual because of physical or chemical factors, such as salt

bridges or disulfide bridges (Table II). To obtain reasona-

ble parameters, these data were excluded from the fitting

procedure and were predicted using the parameters

obtained from the remaining sites. Figure 1 depicts the

histogram of pKa values for the residues Asp, Glu, His,

and Lys.

Model for pKa calculation

The difference in pKa between an amino acid residue

in a protein and that of the amino acid in solution can

be expressed as:

pK ¼ pKmod þ 1

2:3RT
DDG ð1Þ

In Eq. (1), R is the gas constant and T is the tempera-

ture (usually 298 K). The term DDG is the difference in

free energies of deprotonation in the model compound

and in the protein. Because of the complex nature of

DDG, the pKa shift can be viewed as consisting of two

parts: (1) transfer from the model compound to the pro-

Table I
Statistics for the 475 pKa Values

Residue Number Average Min Max SD

Asp 150 3.47 1.40 9.90 1.22
Glu 146 4.16 2.10 7.60 0.81
His 96 6.30 2.30 9.20 1.37
Cys 8 4.67 2.23 8.80 2.91
Tyr 28 9.90 2.09 12.50 2.62
Lys 47 10.04 2.21 12.05 1.73
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Table II
List of pKa Values with Large Deviation from the pKa Values of Model Compounds

PDB Residue pKa Note Reference

1A2P A:73 E 2.10 D93 forms a salt link with R69 and titrates at much lower pH values. 6
A:93 D 2.00
A:101 D 2.00

1A91 61 D 7.0 D61 is thought to protonate and deprotonate during each proton
translocation cycle. This pKa was significantly higher.

37

1CDC A:41 E 6.7 E41 is on the binding surface of rat CD2 with an unusually elevated
pKa, and the electrostatic interaction with the E29 side chain is a
significant contributing influence.

38

1D3K A:45 Y 7.09 The low pKa values of tyrosines are due to the electrostatic
interactions with the neighboring groups. The low pKa of Y188 is
due to the iron-binding ligand interactions with K206 in open-form
and with K296 in the closed-form of the protein.

39
A:85 Y 8.01
A:96 Y 7.06
A:188 Y 6.86

1HIC 39 C 3.76 40
1HPX A:25 D 6.20 The carboxyl of D25 (chain A) is protonated while that of D125

(chain B) is not protonated. The side chain of D25 is protonated in
order to donate a hydrogen bond to carbonyl oxygen of KNI-272.

41

1L63 31 H 9.10 A salt bridge formed between the side chains of D70 and H31
contributes the perturbation of pKa values in the native state.

42
70 D 1.40

1LYS A:66 D 2.00 The pKa of D66 is inaccurate because of an insufficient number of
chemical shift values obtained at low pH.

43
1LZ3 66 D 2.00
1M8B A:56 C 2.27 44
1M8C A:56 C 2.27
1MHI A:19 Y 2.87 Salt bridges are established between E (B13) and H (B10). 45

B:5 H 3.75
B:10 H 2.66
B:13 E 2.45
B:16 Y 2.09

1MUT 53 E 7.60 E53 is functioning as a base catalyst in the active quaternary
complex.

46

1OMU 31 Y 12.50 C56 forms disulfide bridge with C24. The very high pKa of Y31 may
be attributed to a short hydrogen bond with D27 and its low
solvent accessible surface area.

47
56 C 2.50

1PNT 72 H 9.20 The high pKa is hypothesized to be caused by electrostatic
interactions with nearby negatively charged groups (E23 and D42).

48

1QH7 A:60 H 4.01 The low pKa of H60 provides a hint of an unusual microenvironment,
despite the electrostatic influence of E167 which would be
expected to elevate the pKa. The low pKa of H162 reflects the
buried hydrophobic environment of the imidazole ring within the
enzyme.

49
A:162 H 2.70

1RGG A:79 D 7.37 D79, which is buried but does not form hydrogen bonds, has the
most elevated pKa.

10

1RNZ 14 D 1.90 n/a
1SBT 17 H 3.00 The four histidine residues are neutrally charged and do not titrate. 50

39 H 3.00
67 H 3.00
226 H 3.00

1SPU A:383 D 9.70 The high pKa is due to the fact that the deprotonation disrupts the
hydrogen-bonding interaction with the pyridine nitrogen of the 2HP
moiety.

51

1SSO 18 K 3.00 K18 is involved in both a salt bridge and an H-bond. 52
1TRS 26 D 8.10 In both the reduced and the oxidized states of human thioredoxin,

The stabilization of the protonated side chain of D26 is achieved
via a hydrogen-bonding network involving the hydroxyl group of
the neighboring S28.

53
1TRW 26 D 9.90

1XNB 83 D 2.00 D83 is completely buried, forming a strong salt bridge with R136.
D101 is located on the surface of the protein, stabilized in the
deprotonated form by an extensive network of hydrogen bonds.
H149 is completely buried within the hydrophobic core and is
involved in an extensive network of hydrogen bonding
interactions. E172 plays a role of the acid/base catalyst.

54,55
101 D 2.00
149 H 2.30
172 E 6.70

2OVO 29 K 2.21 The low pKa for the a-carboxyl group of C56 is attributed to
acidification by the disulfide group.

56
56 C 2.23

2RN2 102 D 2.00 57
148 D 2.00
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tein neglecting interactions with other sites, giving the

intrinsic pKa (pKa
intr); (2) site–site interactions resulting

in an additional shift in the pKa.
17 Therefore, the term

DDG can be separated into a site–site interaction term

(DGss) and an intrinsic term (DGintr), and Eq. (1) can be

rewritten as:

pK ¼ pKmod þ 1

2:3RT
DDG

¼ pKmod þ 1

2:3RT
ðDGss þ DGintrÞ ¼ pK intr þ 1

2:3RT
DGss

ð2Þ

Here, we adopt a simplified model for calculating pKa.

The main issues are as follows.

To avoid estimating pKa
intr in Eq. (2), we instead used

pKa
0 (the average pKa value found in the data set of the cor-

responding residues) as a reference state. Since the experi-

mental pKa values display a normal distribution, the value

of pKa
0 differs from the intrinsic pKa

intr only by a constant.

The pKa value of a given residue i can then be

described as:

pKi ¼ pK 0
i þ 1

2:3RT
DGi ð3Þ

The model described here assumes that the interaction

between the residue of interest and the surrounding resi-

dues is the dominant influence on pKa, and that interac-

tions with more distant residues can be neglected because

of shielding by the neighboring residues. To simplify the

calculation, we defined a sphere with a fixed radius cen-

tered at the Ca atom of the residue of interest and calcu-

lated the pKa shift using only residues whose Ca atom

was located within the sphere.

NMR experiments to determine protein pKa values

indicate that with a few exceptions, the pH dependency

of chemical shifts of ionizable residues could be fitted by

the Henderson-Hasselbach equation.6–10 This indicates

that the free energy change of the proton binding reac-

tion is unchanged by variations in pH, although the resi-

dues undergo changes in charge state and the protein

constantly experiences conformational fluctuations. We

therefore assume that the pKa shift is a function of the

amino acids in the sphere:

pKi ¼ pK 0
i þ f ðn1; n2; . . . ; n20Þ ð4Þ

Here nj (j ¼ 1–20) is the number of jth amino acid

located in the sphere, and the function f(n1,n2 , . . . , n20)
is unknown.

The function f(n1,n2 , . . . , n20) is obtained by a statisti-

cal approach. According to statistical principles, if n1,

n2 , . . . , n20 are independent random variables, their linear

combination is a normal distribution. For simplification,

Figure 1
Distributions of pKa values in proteins: (a) 134 Asp, (b) 141 Glu, (c) 85 His and (d) 45 Lys. Each column entry represents the number of pKa values, in 0.5 pH unit

increments.
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we assume that the pKa shift induced by residue–residue

interaction is a linear function of the amino acids around

the ionizable residue:

pKi ¼ pK 0
i þ

X20

j¼1

cijnij ð5Þ

Here i (i ¼ 1–7) for the ionizable residues Asp, Glu,

His, Cys, Tyr, Arg and Lys, and j (j ¼ 1–20) for 20 amino

acids with N-termini represented as an analog of Lys and

C-termini as an analog of Asp. Cij denotes the coeffi-

cients for the residue–residue interaction term for residue

i with another residue j, and nij denotes the number of

residue j around the residue i.

Fitting procedure with multiple
linear regression method

The coefficients Cij were determined from the data in

the training set using the multiple linear regression

method to minimize the sum of the square of deviations

between the left and the right side of the equation.58,59

In addition to a self-consistency validation, a sixfold

cross validation was performed. The 73 protein chains

were randomly placed into six groups and each group in

turn was predicted using the coefficients obtained using

the remaining groups as a training set. Since the data size

for Cys and Tyr were too small to determine the coeffi-

cients Cij, predictions of Cys and Tyr were performed

using the coefficients of residue His.

RESULTS

The model used here assumes that the interaction

between the residue of interest and its close neighbors is

the dominant factor in pKa shift, and interactions

between this residue and more distant residues can be

neglected because of shielding by adjacent residues. To

define the first layer, a number of parameters such as the

orientation and shielding of the residues should be used.

Because of limitations on the size of the data set, an ex-

cessive number of parameters could result in over-fitting.

To simplify the calculation, we defined a sphere of fixed

volume centered at the Ca atom of the ionizable residue.

Residues whose Ca atom was located within the sphere

were considered in the pKa shift calculation. It was found

that a sphere of radius 11 Å gave the minimum RMSD

(data not show).

For each ionizable residue i (Asp, Glu, His, Lys), 20

coefficients Cij were determined by fitting the data in the

training set. The self-consistency and sixfold cross valida-

tion tests were performed in the prediction procedure,

and the results are listed in Table III. The average RMSD

between predicted and experimental values of all 405

sites for the self-consistency validation and the sixfold

cross validation are 0.562 and 0.982, respectively. In com-

mon with previous prediction works,60 the results dem-

onstrate a gap in RMSD between the prediction perform-

ance of the self-consistency validation and the sixfold

cross validation. The gap increases with decreasing size of

the data set. The largest data set with 141 sites of residue

Glu produced RMSD values of 0.507/0.659 for self-con-

sistency/sixfold cross validation, while the smallest data

set with 45 sites of residue Lys yielded RMSD values of

0.425/1.845.

The above results demonstrate that prediction using 20

parameters could result in over-fitting due to limitations

of data set size. To avoid over-fitting, the parameters

were reduced by classifying the 20 amino acids into 13

groups: His, Cys and Tyr were treated as His (with func-

tional group ��XH, X ¼ O or N); Arg and Lys as Lys

(with functional group: ��NH3); Asn and Gln as Asn

(with functional group: ��CONH2); Ala, Gly, Leu, and

Val as Ala (hydrophobic residues); and the rest remains

ungrouped. Prediction using 13 parameters produced an

obvious improvement in the sixfold cross validation as

shown in Table IV. The RMSD of the sixfold cross valida-

tion for 405 pKa values decreased from 0.982 with 20 pa-

rameters to 0.775 with 13 parameters. The improvement

in prediction for residue Lys was especially apparent,

where the RMSD of the sixfold cross validation predic-

tion decreased from 1.845 with 20 parameters to 1.0 with

13 parameters. Further attempts at reducing the amino

acid alphabet or reclassification produced no obvious

improvements in RMSD (data not shown). The correla-

tion plots between experimental pKa values and pre-

dictions calculated with 13 parameters are presented in

Figure 2. These plots show that most of the calculated

Table III
RMSD of Prediction with 20 Parameters for 405 pKa Values

Residue Data size
Self-consistency

validation
Sixfold cross
validation

Asp 134 0.557 0.728
Glu 141 0.507 0.659
His 85 0.705 1.111
Lys 45 0.425 1.845
TOTAL 405 0.562 0.982

Table IV
RMSD of Prediction with 13 Parameters For 405 pKa Values

Residue Data size
Self-consistency

validation
Sixfold cross
validation

Asp 134 0.569 0.662
Glu 141 0.521 0.609
His 85 0.769 0.990
Lys 45 0.486 1.040
TOTAL 405 0.593 0.775
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values are within 0.6 pH units of the corresponding ex-

perimental values.

In the current data set, data for Cys and Tyr was insuf-

ficient for parameter fitting and data for residue Arg was

not available. To extend the prediction program to these

three residues, the coefficients for His were used for the

prediction of Cys and Tyr, since they share the same

functional group ‘��XH’ (X ¼ O or N). The RSMD of

residues Cys and Tyr is �1 pH unit (Table V). We there-

fore suggest that the coefficients for Lys could also be

used for the prediction of residue Arg, considering the

common functional group ‘��NH3’.

Approximately 10% of the ionizable residues with

highly shifted pKa values are located in an unusual envi-

ronment. The real scientific challenge is to accurately

predict these pKa values. Unfortunately, the present

method based on statistical approach is not suitable to

predict these pKa values due to the limitation of the data

size. The average RMSD of prediction for these 46 sites is

greater than 4 pH units, which indicates that these resi-

dues should be treated separately (the results are listed in

Table VI and illustrated in Figure 3).

DISCUSSION

In this study, we propose a simple model for calcula-

tion of amino acid pKa values in proteins. Despite its

simplicity, the model exhibits good prediction perform-

ance. Compared with other theoretical models and em-

pirical prediction methods described in the literature,

our model contains several significant differences.

In our model, pKa values derived from model com-

pounds (pKa
mod) are replaced by average values derived

from a database (pKa
0). The advantage of this replace-

ment is that some specific parameters such as dielectric

constants for the protein or the solvent are omitted.

Because the experimentally determined pKa values show

a normal distribution, the value of pKa
0 differs from that

of pKa
mod by a constant obtained automatically from the

fitting procedure.

The outcome of pKa calculations based on macroscopic

electrostatic models critically depends on the choice of

protein dielectric constant, but defining this value is not

straightforward. To establish the difference between vari-

Figure 2
Correlation plots between experimental and calculated pKa values for all 429

ionizable sites (134 Asp, 141 Glu, 85 His, 45 Lys, 3 Cys, and 21 Tyr). The solid

line is the diagonal and the dotted lines represent 0.6 pH unit deviation from

experimental values.

Table V
RMSD of Prediction for Cys and Tyr with the Coefficients of His

Residue Data size 20 parameters 13 parameters

Cys 3 1.241 1.050
Tyr 21 1.080 1.067

Table VI
RMSD of Prediction for 46 pKa Values Listed in Table II with 13 Parameters

Obtained from Training Set of 405 pKa Values

Residue Data size RMSD

Asp 16 3.252
Glu 5 2.112
Lys 2 7.723
His 11 3.442
Cys 5 6.666
Tyr 7 4.938
Total 46 4.258

Figure 3
Correlation plots between experimental and calculated pKa values for 46

ionizable sites which have large pKa shift as listed in Table II (16 Asp, 5 Glu,

11 His, 2 Lys, 5 Cys, and 7 Tyr). The solid line is the diagonal.

Y. He et al.
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ous macroscopic and semimacroscopic models and to

illustrate the nature of the protein dielectric constants,

Schutz and Warshel19 proposed a discriminative bench-

mark that mainly included residues whose pKa values were

shifted significantly from their values in water, and they

asserted that the optimal dielectric constant for self-ener-

gies is not the optimal dielectric constant for charge–

charge interactions. The protein dielectric constant is not

a universal constant but simply a parameter that depends

on the model used. In our study, the DG term in the pKa

calculation appears in a very simple form with only 20 (or

13 in a reduced alphabet) residue-type parameters.

Because proteins are made of amino acid building blocks,

residue–residue interactions include not only electrostatic

interactions but also other types such as van der Waals

interactions, which are usually ignored by models

described in the literature. Furthermore, in this model, the

DG term of the pKa shift is proportional to the number of

amino acids surrounding the residue of interest, since bur-

ied residues are surrounded by more neighbors than resi-

dues exposed to solvent. This is consistent with previous

studies asserting that a relationship exists between solvent

accessibility surface area (ASA) and pKa values: pKa values

tend to decrease with increasing ASA.5

During NMR experiments to determine pKa values,

there are changes in the charge states of the residue of in-

terest and surrounding residues, and the protein is con-

stantly undergoing conformational fluctuations in

response to changing solution pH. However, techniques

for including conformational flexibility in titration calcu-

lations are still under development. The methods applied

so far have several shortcomings; for instance, the chosen

conformational ensemble does not necessarily adequately

represent the protein conformational space over the inves-

tigated pH range, and no conformational variation of the

protein backbone is currently allowed during the compu-

tational titration.17 The NMR experiments for determin-

ing protein pKa values show that with a few exceptions,

the pH dependency of the chemical shifts of the ionizable

residues could be fitted by the Henderson-Hasselbach

equation.6–10 This suggests that the free energy change of

the proton binding reaction is unchanged during the

change in pH. It is most likely that the protein structure

does not sample all the conformations, rather only the en-

semble whose proton binding free energy change can be

compensated by conformational change. Despite the fact

that the model presented here ignores both conforma-

tional changes and changes of the residue charge state, it

performs quite well in predicting pKa values.

Despite its relative simplicity, the model is quite capable

of reproducing experimental results. The principal short-

coming of this statistical model is the dependence on the

size of the data set. In order to reduce fitting parameters, the

model neglects the orientation and shielding of residues sur-

rounding the amino acid of interest, and this omission

could introduce errors into the prediction. Furthermore, the

current data set is too small to derive prediction coefficients

for Cys and Tyr as well as residues with great pKa shift. An

increase in the number of experimentally determined pKa

values would overcome this shortcoming and further

enhance the accuracy of our model.
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