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Abstract

The susceptibility of neuronal cells to nitric oxide (NO) is a
key issue in NO-mediated neurotoxicity. However, the
underlying mechanism remains unclear. As a cyclic guano-
sine  monophosphate (cGMP)-independent NO signaling
pathway, S-nitrosylation (or S-nitrosation) has been sugges-
ted to occur as a post-translational modification in parallel
with O-phosphorylation. The underlying mechanism of the
involvement of protein S-nitrosylation in the susceptibility of
neuronal cells to NO has been little investigated. In this
study, we focused on the role of S-nitrosothiols (RSNO) in
the susceptibility of a cerebellar cell line R2 to NO. Our
results showed the following: (i) S-nitrosoglutathione (GSNO)
induced a burst of RSNO in GSH-depleted R2 cells, the
majority of which were primarily contributed by the S-nitro-
sylation of proteins (Pro-SNOs), and was followed by severe
neuronal necrosis; (ii) the elevation in the level of Pro-SNOs
resulted from a dysfunction of S-nitroglutathione reductase

(GSNOR) as a result of its substrate, GSNO, being unavail-
able in GSH-depleted cells. In the meantime, the suppression
of GSNOR increased NO-mediated neurotoxicity in R2 cells,
as well as in cerebellar granule neurons; (iii) Our results also
demonstrate that the burst of RSNO is the “checkpoint” of
cell fate: if RSNO can be reduced to free thiol proteins, cells
will survive; if they are further oxidized, cells will die; and (iv)
GSH-ethyl ester and Vitamin C protected R2 cells against
GSNO neurotoxicity through two distinct mechanisms: by
inhibiting the elevation of Pro-SNOs and by reducing
Pro-SNOs to free thiol proteins, respectively. A novel mech-
anism underlying the susceptibility of neuronal cells to NO
is proposed and some potential strategies to prevent the
NO-mediated neurotoxicity are discussed.
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Nitric oxide (NO) is a messenger molecule involved in
neuronal survival (Rauhala ef al., 1998), differentiation
(Peunova and Enikolopov 1995), neurotransmitter regulation
(Shimizu-Sasamata et al. 1998), synaptic plasticity (Holscher
1997) and regulation of cerebral blood flow (Izuta et al.
1995). However, excess NO can be produced by activated
microglia in an uncontrolled inflammatory response (Bal-
Price and Brown 2001) or by the activation of nitric oxide
synthase in excitotoxicity (Dawson 1995). The excessive
production of NO has been reported to participate in acute
and chronic neurodegenerative diseases including stroke,
multiple sclerosis, Parkinson’s disease, and Alzheimer’s
disease (Samdani et al. 1997; Heales et al. 1999). Therefore,
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the susceptibility of neuronal cells to NO is an important
issue in NO-mediated neurotoxicity.

In recent years, S-nitrosylation of proteins by NO, as a
cyclic guanosine monophosphate (cGMP)-independent path-
way, has been widely investigated. S-nitrosylation is likely a
prototypic redox-based signaling mechanism (Stamler et al.
2001) because the S-nitrosothiols (RSNO) can not only be
reduced to form thiols, but can also be oxidized to form
either S-glutathionylation (-SSG), or cysteine sulfenic acid
(-SOH), or cysteine sulfinic acid (—SO,H) or cysteine
sulfonic acid (—SOz;H). The substantially different roles of
these different types of modification are implicated in various
physiological and pathological processes (Stamler and
Hausladen 1998). Numerous S-nitrosylated proteins have
been identified in vivo including serum albumin (Stamler
et al. 1992), hemoglobin B-subunits (Gow and Stamler
1998), the ryanodine-sensitive calcium release channels (Xu
et al. 1998), N-methyl-D-aspartate (NMDA) receptor (Choi
and Lipton 2000), methionine adenosyl transferase (Peraz-
Mato et al. 1999), caspase-3 (Mannick et al. 1999), and
matrix metalloproteinases (Gu et al. 2002). However, little is
known about the roles and the regulation of protein
S-nitrosylation in the susceptibility of neuronal cells to NO.
Beltran et al. (2000) have shown that S-nitrosylation takes
place in the presence of oxidative stress, but neither the
progression nor the reversibility of this process, as well as its
relevance in terms of either cell survival or death, have been
investigated. More recently, it was reported that glutathione
(GSH) depletion resulting in selective mitochondrial com-
plex I inhibition in dopaminergic cells is via an NO-mediated
pathway not involving peroxynitrite (Hsu et al. 2005).
However, there is no direct experimental evidence about
the relationship of S-nitrosylation and cell death. Moreover,
there is also no evidence about the molecular mechanism of
the occurrence of S-nitrosylation.

S-nitrosoglutathione reductase (GSNOR) was recently
identified and found to be conserved from bacteria to
humans. This enzyme is capable of regulating the levels of
intracellular S-nitrosothiols (RSNO) (Liu et al. 2001). It
belongs to the alcohol dehydrogenase class III family of
enzymes, also known as glutathione-dependent formalde-
hyde dehydrogenase, and is capable of catalyzing the
NADH/NADPH-dependent degradation of S-nitrosoglutathi-
one (GSNO) to glutathione sulphinamide, oxidized glutathi-
one (GSSG) and ammonia (Jensen et al. 1998). GSNOR has
been reported to play an essential role in the biological
processes such as vascular homeostasis and endotoxic shock
(Liu et al. 2004). Intriguingly, GSNOR is the sole ADH in
the brain and is abundant in the hippocampus, midbrain and
cerebellum, which implies that it may play a role in the
nervous system (Galter et al. 2003).

In this study, we use the R2 cell line, a conditionally
immortalized cerebellar neural line (Rabizadeh et al. 1993),
to investigate the roles of protein S-nitrosylation in the
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susceptibility of neuronal cells to NO and the involvement of
GSH and GSNOR in this process.

Materials and methods

Materials

Dulbecco’s modified Eagle’s medium and newborn calf serum were
obtained from Hyclone (South Logan, UT, USA). Trypsine and
penicillin—stretomycin were from Gibco (Rockville, MD, USA).
T4 DNA ligase was from New England BioLabs (Ipswich, MA,
USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bro-
mide (MTT), D,L-buthionine-[S,R]-sulfoximine (BSO), 5,5’-dithio-
bis(2-nitrobenzoic) acid (DTNB), Vitamin C, dithiothreitol (DTT),
N-ethymaleimide, neocuproine and NADH were from Sigma (St
Louis, MO, USA). Diethylenentriaminepenta-acetic acid, phenyl-
methylsufonyl fluoride, bathocuproinedisulfonic acid, sulfanilamide,
and N-(1-naphthyl) ethylenediamine were from Aldrich (St Louis,
MO, USA). N-[6-(biotinamido)hexyl]-3’-(2’-pyridyldithio) propion-
amide (biotin-HPDP), methyl methanethiolsulfonate (MMTS) were
from Pierce (Rockford, IL, USA). Glutathione was from Roche
Molecular Biochemicals (Indianapolis, IN, USA). RNAi-Ready
pSIREN-Retro-ZsGreen vector was from Invitrogen (Carlsbad, CA,
USA). The Determiner M—NH; Diagnostic Kit was from Shanghai
Runny Science & Technology Co. Ltd. (Shanghai, China). The
lactate dehydrogenase (LDH) kit was from Zhongsheng High-tech.
Bioengineering Company (Beijing, China). All other chemicals
were of the highest grade commercially available.

Cell culture and treatments

R2 cells (cerebellum neural cell line) were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% (v/v) newborn
calf serum, 100 U/mL penicillin, and 100 pg/mL streptomycin at
37°C in humidified 5%CO0,/95% air. To deplete intracellular
GSH pools, cells were pretreated with BSO (an inhibitor of
y-glutamylcysteine synthetase). BSO™ indicates pre-treatment
with 0.5 mmol/L BSO for 24 h and GSNO" indicates treatment
with 0.5 mmol/L GSNO for the indicated time unless otherwise
stated.

Primary cerebellar granule neurons (CGNs) were isolated from
8-day-old Sprague-Dawley rats as described previously (Novelli
et al. 1988). Briefly, cells were cultured in 35 mm Petri-dishes with
a 14 mm glass microwell (MatTek corporation, Ashland, MA, USA)
and seeded at a density of 2 x 10° per mL in basal modified Eagle
medium containing 10% fetal bovine serum, 25 mmol/L KClI,
2 mmol/L glutamine, and penicillin (100 U/mL)-streptomycin
(100 pg/mL). Cytosine arabinoside (10 mmol/L) was added to the
culture medium 22-24 h after plating to limit the growth of non-
neuronal cells. CGNs were cultured for 8 days and then used for the
experiments.

Synthesis of S-nitrosoglutathione

S-nitrosoglutathione was synthesized as described previously (Hart
1985). Briefly, GSH in 625 mmol/L HCl was reacted with the
equimolar sodium nitrite at 4°C for 45 min. After the addition of 2.5
volumes of acetone, the mixture was stirred for another 20 min.
GSNO was washed once with 80% acetone, twice with 100%
acetone, twice with diethyl ether, and dried under vacuum. The yield
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of GSNO was quantified by the absorbance of its S-NO moiety at
334 nm (e334 = 800/mol/L™" em™) (Singh er al. 1996). Fresh
GSNO was prepared just before each experiment.

Cell viability assay

S-nitrosoglutathione-induced neurotoxicity was evaluated with the
MTT assay. In brief, after exposure to GSNO for the indicated time,
cells were incubated with 0.5 mg/mL MTT for 3 h at 37°C and
dimethylsulfoxide was added to solubilize the formazan product.
After 30 min incubation, the product was analyzed at 595 nm using
an automatic microtiter reader (Bio-Rad, Hercules, CA, USA). The
optical density of the control sample was defined as 100% of the cell
viability.

Analysis of necrosis
Necrotic cells were detected by using the index of LDH leakage
from damaged cells and were expressed as a percentage of total
cellular LDH in the cells. LDH activity was measured using a
commercial assay Kkit.

Intracellular GSH measurement

Glutathione levels were measured as described previously (Tietze
1969) Briefly, after the exposure to 0.5 mmol/L GSNO for the
indicated time, cell cultures were washed twice with phosphate-
buffered saline (PBS), lysed in 3 : 1 (v/v) 8.3% sulfosalicylic acid
and 0.2% Triton X-100 at 4°C for 30 min, centrifuged at 12 000 g
for 10 min. The supernatant was reacted with an equal volume of
1 mmol/L DTNB at 20-25°C for 5 min and the reaction was
monitored at 415 nm using an automatic microtiter reader (Bio-
Rad). A standard curve was produced by the different concentrations
of GSH and DTNB under the same conditions as above. The protein
concentrations in the supernatant were determined using a
bicinchoninic acid (BCA) protein assay reagent kit (Pierce).

Total cellular S-nitrosothiols content assay

S-nitrosothiols content was measured using the Saville-Griess assay
(Hoffmann et al. 2001). In brief, cells were lysed in Griess lysis
buffer (50 mmol/L Tris-HCl, pH 8.0, 150 mmol/L KCl, 1%
Nonidet-P40, 1 mmol/L phenylmethylsufonyl fluoride, 1 mmol/L
bathocuproinedisulfonic acid, 1 mmol/L diethylenentriaminepenta-
acetic acid and 10 mmol/L N-ethymaleimide). Then the cell lysate
was incubated with 1% sulfanilamide and 0.1% N-(1-naphthyl)
ethylenediamine in either the presence or the absence of
0.375 mmol/L HgCl, at 20-25°C for 20 min, and the RSNO
content was measured photometrically at 550 nm. The quantity was
calculated using defined GSNO concentrations as a standard. The
determination of the protein concentrations in cell lysates was
carried out using the BCA protein assay reagent kit (Pierce).

Intracellular S-nitrosylated proteins (Pro-SNOs)

and low-weight-molecules assay

Intracellular Pro-SNOs and low weight molecules were analyzed as
described previously (Hoffmann ef al. 2001). Cell lysates were
prepared as described above following the procedures of RSNO
contents assay, and were passed through Hitrap desalting columns
(Amersham) pre-equilibrated with Griess lysis buffer. Pro-SNOs
were separated from low molecular weight RSNO by desalting with
150 mmol/L NaCl, then the RSNO contents of the proteins and the
low weight molecules were performed by using the RSNO contents
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assay as described above. Data were calculated as nmol RSNO per
mg proteins loaded on the column.

Detection of Pro-SNOs by the biotin-switch method

and western blotting

The analysis of Pro-SNOs was described previously (Jaffrey and
Snyder 2001; Sumbayev et al. 2003). In brief, after exposure to
0.5 mmol/L GSNO for 2 h, cells were washed three times with ice-
cold PBS, and trypsinized from the plate. And then, cells were lysed
in HEN buffer ( 250 mmol/L Hepes-NaOH pH 7.7, 1 mmol/L
EDTA, 0.1 mmol/L Neocupeoine) containing 0.5% NP-40 for
30 min on ice and centrifuged at 10 000 g for 10 min. Four
volumes of blocking buffer [9 volumes of HEN buffer plus one
volume 25% sodium dodecyl sulfate (SDS), and 20 mmol/L
MMTS] were incubated with one volume of the supernatant at
50°C for 20 min with frequently vortexing. MMTS was then
removed by protein precipitation with 10 volumes pre-chilled
acetone. Biotin-HPDP (2 mmol/L) and sodium ascorbate (1 mmol/L)
were incubated with the samples at 25°C for 1 h. After SDS-
polyacrylamide gel electrophoresis (PAGE) sample buffer was
added, the samples were resolved by SDS-PAGE and transferred for
immunoblotting with streptravidin—horseradish peroxidase. S-nitros-
ylated bovine serum albumin was used as a positive control.

Measurement of cell-surface thiols

The quantity of cell-surface thiols was measured as described
previously (Zai ef al. 1999). In brief, 1 x 107 treated cells were
washed twice with cold PBS, trypsinized in the plate and
resuspended in PBS. The cells were then incubated with
200 pumol/L DTNB at 37°C for 1 h, and centrifuged at 200 g for
5 min. The supernatants were measured by the absorption at 412 nm
and the determination of protein concentrations in the supernatants
was carried out by BCA protein assay reagent kit (Pierce).

Measurement of the thiols of intracellular proteins

The quantity of protein thiols was measured by using DTNB
(Youn and Kang 2000). In brief, after exposure to 0.5 mmol/L
GSNO for the indicated time, the supernatants of cell extract were
precipitated with 5% trichloroacetic acid and washed twice. The
protein pellets were solubilized in 0.5mol/L Tris—HC1 (pH 8.8)
containing 5 mmol/L EDTA and 1% SDS and divided into two
aliquots. One was treated with 5 mmol/L DTT at 37°C for 1 h, and
the other was not. Then each aliquot was reacted with 0.25 mmol/
L DTNB at 20-25°C for 5 min and the reaction was monitored at
412 nm by automatic microtiter reader (Bio-Rad). The aliquot
treated with 25 mmol/L N-ethymaleimide was used as a negative
control.

Decomposition of S-nitrosoglutathione

After replacing the medium with either fresh cell culture medium or
Locke’s solution, cells were treated with 0.5 mmol/L GSNO for the
indicated time. The GSNO contents in the supernatants were
assayed with the absorbance of GSNO at 334 nm.

Intracellular ammonia assay

The treated cells were washed with PBS twice, and lysed in the
lysis buffer (20 mmol/L Tris—HCI, pH 8.0, 0.5 mmol/L EDTA,
0.1% Triton X-100) on ice for 15 min. After centrifuging at
12 000 g for 15 min, the supernatant were assayed for ammonia.
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The intracellular ammonia was determined using an enzymic assay
(the NADH-dependent conversion of 2-oxoglutarate plus NH; to
glutamate catalysed by glutamate dehydrogense) by the Determiner
M-NHj; Diagnostic Kit (Shanghai Runny Science & Technology
Co. Ltd, China).

Construction of siRNA for S-nitrosoglutathione reductase and
transfection

Two small hairpin RNAs (shRNAs) were generated using the
oligonucleotide DNA sequences (pSIREN-110, 5’AGGCTCA-
TGAAGTTCGGAT3’; pSIREN-223, 5"GGTGCTGGAATTGTGG-
AAA3’), which were then subcloned into the RNAi-Ready pSIREN-
RetroQ-ZsGreen vector (Clontech, BD Biosciences, San Jose, CA,
USA). Luciferase shRNA annealed oligonucleotide (0.5 pmol/uL)
was used as negative control. R2 cells were transiently transfected
by electroporating using a Gene Pulser II System (Bio-Rad) set at
280 Vand 1050 pF in HEPES buffer (0.283mol/L NaCl, 1.5 mmol/L
Na,HPO,, 0.023 mol/L HEPES, pH 7.05).

The GSNOR RNAI plasmid for rat was constructed with RNAi-
Ready pSIREN-RetroQ-ZsGreen vector. The plasmid sequence
is: pSIREN-1622, 5-GAAGTTCGAATTAAGATCA-3’. Luciferase
shRNA annealed oligonucleotide (0.5 pmol/ul) was used as
negative control. CGNs were transfected using a calcium phosphate
co-precipitation kit (Profection Mammalian Transfection System-
Calcium phosphate, Promega (Madison, WI, USA) as described
previously (Li et al. 2000). Briefly, the conditioned culture medium
was saved and 4 pg of plasmids was used for each 35 mm dish to
produce DNA-calcium phosphate precipitation. Reactions were kept
at 37°C for 30 min, and then the transfection medium was aspirated
and washed twice. The conditioned medium was added back to the
cultures. Seventy two hours after transfection, the CGNs were
treated with 30 pmol/L GSNO for 18 h, and then used for the
analysis for apoptosis.

Analysis of cell apoptosis

Analysis of cell apoptosis was determined by the condensed
chromatin staining with the fluorescent probe Hoechst 33342. In
brief, 4% paraformaldehyde-fixed CGNs were stained with Hoechst
33342 (5 pg/mL) at 20-25°C for 10 min, and then incubated in
Loceke’s solution (154 mmol/L Nacl; 5.6 mmol/L KCl; 2.3 mmol/L
CaCl,; 3.6 mmol/L NaHCOs;; 5.6 mmol/L Glucose; 5.0 mmol/L
Hepes, pH 7.4) for assay. The chromatin images were observed with
a fluorescent microscope (IX71, Olympus, Shinjuku-ku, Tokyo,
Japan) and taken by CCD camera system (C4742, HAMAMATSU,
Hamamatsu City, Shizuoka, Japan) (excitation,350 nm; emission,
450 nm).

Measurement of S-nitrosoglutathione reductase activity

The GSNOR activity in R2 cells was measured as described
previously (Liu ef al. 2001). In brief, cells were lysed in a solution
containing 20 mmol/L Tris—HCI (pH 8.0), 0.5 mmol/L EDTA, 0.1%
NP-40 and 1 mmol/L phenylmethysulphonylfluoride. To detect
GSNO-metabolizing activity, 0.85-1.0 mg/mL lysate was incubated
with 100 pmol/L GSNO in reaction buffer (20 mmol/L Tris—HCI,
pH 8.0, 0.5 mmol/L EDTA) with 0 or 200 pmol/L NADH at
20-25°C for various times. The GSNO reductive activity was
measured by GSNO-dependent NADH consumption using the
change in absorbance at 340 nm per minute per mg protein.
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Statistical analysis

All results are expressed as the means + SEM derived from three or
more experiments. Statistical analysis of the results was determined
by the student #-test. The difference between means was considered
statistically significant when p < 0.05.

Results

A burst of production of global Pro-SNOs

in GSH-depleted R2 cells followed by severe neuronal
necrosis

The quantity of RSNO in GSH-depleted cells increased by
six-fold after 2 h treatment with GSNO, whereas it did not
change significantly in control cells (BSO™) even after 48 h
of treatment with GSNO (Fig. 1a). We also measured the
S-nitrosylation of proteins and of low molecular weight
species using the Saville-Griess assay. Fig. 1b shows that the
elevated level of S-nitrosylation was mainly contributed by
proteins rather than low-molecular-weight species (<5 kDa).
Using the biotin-switch and western blotting methods we
further confirmed that there was a great degree of protein
S-nitrosylation in the BSO*/GSNO" group compared with
the BSO/GSNO™ group (Fig. lc).

We then investigated the effect of this biochemical
variation on the cell fate. In the BSO"/GSNO™ group, the
cell viability decreased sharply and LDH leakage increased
rapidly with time, indicating cell necrosis. In the BSO™/
GSNO" group, the cell viability decreased slowly and the
LDH leakage was low, indicating cell apoptosis (Figs 1d and
e). BSO treatment had little effect on cell viability (95%
viability of the control after treatment for 24 h). Observation
of the morphology showed that although the level of
S-nitrosylation burst into the maximum after 2—4 h, cells
became necrotic after 8 h (Fig. 1f).

The relationship between RSNO and cell susceptibility
to NO

It has been reported that RSNOs are selectively reduced with
Vc to form thiols (Jaffrey and Snyder 2001). Therefore, we
tried to use Vc to regulate the RSNO level and hence to
examine the effect of RSNO levels on cell fate. In both the
(BSO'/GSNO")/Vc" group and the (BSO'/GSNO")/Vc™
group, the RSNO level first increased and then fell with
time. Addition of V¢ even accelerated the rate of the decrease
(Fig. 2a). However, the cell response was completely
different in the two groups. In the (BSO/GSNO")/Vc~
group, with the decreasing of RSNO level, the levels of thiols
in the cells decreased about 50%; and the cell viability
decreased to 23% of the level of normal cells. In contrast in
the (BSO"/GSNO")/Vc" group, with the decrease in the
RSNO level the thiol level recovered to about 80% and the
cell viability recovered to about 75% ( Figs 2b and c).
Addition of Vc did not result in 100% recovery of cell
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viability, possibly because some S-nitrosylated proteins were
oxidized to Pro-SSG or Pro-SOH, and Vc¢ could not reduce
them to form thiols. After addition of DTT, the level of
protein thiols in both systems (BSO"/GSNO'/Vc', BSO"/
GSNO'/ Vc7) recovered to the normal level. This suggests
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that the modification of proteins can be reversed by the
addition of DTT, i.e., the thiols formed are —SSG and —SOH.
Reducing RSNO to free thiols by Vc showed significant
protection of cells against this nitrosative stress. RSNO was
deduced to be the key factor in determining cell viability.

The involvement of glutathione in the burst
of S-nitrosothiols and in the cell susceptibility to nitric
oxide
To investigate the reasons behind the burst of RSNO in BSO-
treated cells, we firstly evaluated the effects of the cell culture
medium, the cell itself and BSO treatment on GSNO
decomposition. Fig. 3a shows that either BSO treatment or
the presence of the cells themselves did not affect the
decomposition of GSNO. However, cell culture medium
greatly accelerated the decomposition of GSNO compared
with Locke’s solution. The culture medium is the same in
both BSO" and BSO™ systems. Therefore, there must be
another reason underlying the burst of S-nitrosylation.
Secondly, to elucidate what leaded to the elevation of
RSNO, we tested a series of factors that were reported
to regulate the metabolism of GSNO including the
cell-surface thiols (Hart 1985) and the co-action of
v-glutamyltransferase (y-GT) and peptidases (Dringen
et al. 2000). The cell-surface thiols could decompose
GSNO; therefore, the increase of cell surface thiols might
enhance the effect of GSNO. However, our result showed
that the levels of the cell-surface thiols in BSO-treated R2
cells decreased to 78.3 = 0.8% of the control cells (BSO™)
(Fig. 3b), which suggested that the cell-surface thiols at
least did not contribute to the elevation of RSNO. In the
mean time, it has been reported that extracellular GSH and
glutathione conjugates are substrates for the ectoenzyme
v-glutamyl transpeptidase. This enzyme catalyzes the
transfer of a y-glutamyl moiety from GSH or a glutathione
conjugate onto an acceptor molecule. Therefore, it has
been put forward that GSNO is likely to enter the cell by
the co-action of y-GT and peptidases (Taniguchi and Ikeda
1998). The addition of acivicin, an inhibitor of y-GT, did
not affect the increase of RSNO (Fig. 3c), which suggested

Fig. 2 The regulatory effects of Vitamin C (Vc) on levels of S-nitro-
sothiols (RSNO), cell viability and levels of free thiols. (a) The variation
of the relative level of RSNO with time. Cells were treated with
50 umol/L Vc in combination with 0.5 mmol/L GSNO for the indicated
time (A, BSO*/GSNO*/Vc; @®,BSO*/GSNO*/Vc*). (b) Cell viability.
Cells were treated with 50 umol/L Vc in combination with 0.5 mmol/L
GSNO for 24 h. *p < 0.05 as compared with the control group BSO*/
GSNO~; **p < 0.05 as compared with the control groups BSO*/
GSNO*. (c) Free thiols. The concerntrations of Vc and dithiothreitol
(DTT) were 0.5 mmol/L and 2 mmol/L, respectively. *p < 0.05 as
compared with the group (BSO*/GSNO*/Vc™/DTT"). All data are rep-
resented as the mean + SEM, n = 3.
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the co-action of y-GT and peptidases was not involved in
this event.

After excluding the effects of components of the culture
medium and cell surface, we focused on the effect of BSO-
induced GSH-depletion in the burst of RSNO. Different
intracellular GSH levels were reduced by pre-treating cells
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Fig. 3 The effects of culture medium and cell surface on the level of
S-nitrosothiols (RSNO). (a) S-nitrosoglutathione (GSNO) decomposi-
tion under various conditions. The GSNO remaining in either the
culture medium or the Lock’s solution at the indicated time was
monitored by the absorbance at 334 nm (OJ, Locke’s*/Cell/BSO~; A,
Locke’s*/Cell*/BSO™; O, Locke’s™/Cell’/BSO*; V¥, medium*/Cell™/
BSO™; ¢, medium*/Cell*/BSO™; A, medium*/Cell*/BSO™). (b) The
effects of BSO on the cell-surface thiols. *p < 0.05 as compared with
the BSO™ group. (c) The effects of the inhibition of the co-action of
v-glutamyltransferase (y-GT) and peptidases by acivicin on the relat-
ive level of RSNO. The cells were treated with 250 pmol/L acivicin in
combination with 0.5 mmol/L GSNO for 2 h. *p < 0.05 as compared
with the control group (BSO*/GSNO").

with BSO for different times (Fig. 4a). RSNO levels
increased sharply during 6-12 h of BSO treatment (Fig. 4b).
These results show that intracellular RSNO is dependent on
the GSH concentration and there is a threshold GSH level
that leads to elevation of RSNO. We then added 2 mmol/L
GSH-ethyl ester, a membrane permeable GSH analogue, to
the cells together with GSNO. In the BSO"/GSNO" cells, the
initial RSNO level was 3.4 nmol/mg protein and the cell
viability was 15% compared with normal cells. After the
treatment with GSH-ethyl ester, the RSNO level was much
lower than that in BSO"/GSNO" cells (Fig. 4c) and the cell
viability increased to 90% (Fig. 4d). These results indicate
that endogenous GSH is able to regulate the intracellular
RSNO level directly, and the inhibition of elevation of RSNO
levels protects cells from cell death induced by GSNO.

The involvement of GSNOR in the burst of RSNO

and in cell susceptibility to NO

R2 cells were transfected with RNA-interfering constructs
(pSCI-110 and pSCI-223) and we verified the RNAi
procedure by analyzing a green fluorescent protein image
(Fig. 5a) and measuring the GSNOR activity. The activity of
GSNOR in GSNORR2 cells decreased about 50% (Fig. 5b).
After the transfection, the GSNOR R2 cells were treated
with GSNO and it was found that the RSNO content
increased by nearly 50% (Fig. 5¢) and the cell viability
dropped about 40% (Fig. 5d). These results indicate that the
loss of GSNOR renders R2 cells highly susceptible to NO
because of the elevation of RSNO levels.

In addition to R2 cells, we further investigated the effect
of GSNOR on the susceptibility of primary neurons to
NO. GSNOR activity was abolished in CGNs using
GSNOR interfering sequence. As shown in Figs 6a and b,
the neurons transfected with either luciferase interfering
sequences or GSNOR interfering sequences were recog-
nized by bright GFP fluorescence. The apoptotic cells were
recognized by Hoechst 33342 staining method. The
condensed chromatin can be seen in most of GSNOR-
interfering neurons after application of 30 pmol/L GSNO
for 18 h, while not in the negative control (Figs 6¢ and d).
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(b) The intracellular RSNO content measured by the Saville-Griess
assay after 2 h of treatment with GSNO. (c and d). The effects of GSH

The quantitative apoptosis of transfected CGNs was shown
in Fig. 6e, which is about 20% apoptosis in the negtive
control, about 40% apoptosis in the GSNOR RNAi group.
This result indicates that RNAi treatment of GSNOR
enhances primary neuron death, which is similar to the
result in R2 cells.

Coupling of GSH and GSNOR in the metabolism

of excess NO

In order to understand how GSH and GSNOR regulate
the RSNO level, we first measured the GSNOR activity in
GSH-depleted cells. The results indicated that the depletion

© 2007 The Authors

= (b)

n

05 R

The total intracellular RSNO contents (nmol/mg prote|

0 5 10 15 20 25
Time pre-treated with BSO (h)
(d) |
100 b
3 |
g
o 80- *Kk
2 i
°
2 60
E ) *k
£
40 -
g 0 |
@ b *
2 o] [
2
&
0
%\AO 6$O I N . 0%\)\
Oxe x@ N\ ‘\3«\ O
o SO N) o
.&° S O
o® ©
o °
&°

and Vitamin C on the RSNO levels and cell survival. BSO-pretreated
R2 cells were treated with GSNO in combination with 2 mmol/L GSH,
or 2 mmol/L GSH-ethyl ester, or 50 umol/L Vitamin C. *P < 0.05 as
compared with BSO*GSNO™ group; **P < 0.5 as compared with
BSO*GSNO* group.

of GSH has no effect on the activity of GSNOR itself
(Fig. 7a), and also rules out a decrease in GSNOR activity as
an explanation for the increase in RSNO levels in GSH-
depleted cells.

Second, we measured the ammonia level, which is one of
the main products of the metabolism of GSNO, in order to
examine the metabolism of NO in BSO" and BSO™ cells. In
the BSO™ group, the ammonia level increased to about 100%
after 2 h treatment with GSNO. In contrast, in the BSO*
group, the ammonia level increased only about 20% after 2 h
of treatment with GSNO (Fig. 7b). These results indicate that
the primary reason for the increase in nitrosylation of
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proteins is the impairment of NO metabolism through the
GSH-GSNOR pathway

Discussion

From the elevation of Pro-SNOs, it is easy to think that GSH
depletion switches S-nitrosylation from low to high mole-
cular weight species. In this study, we emphasize that the key
point of the elevation of PrO-SNOs is the consequence of the
impairment of the metabolism of NO. In normal cells,
GSNOR catalyzed the GSH-dependent reduction of excess
NO to ammonia. There are two possible factors involved in
this process: one is NADH, the coenzyme for GSNOR; the
other is GSNO, the substrate for GSNOR. We found that the
ratio of NADH/NAD" was not decreased significantly in
GSH-depleted R2 cells (data not shown). We therefore
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propose that when GSH is depleted, extra NO cannot be
transformed to GSNO. Hence, GSNOR cannot function, and
the excess NO results in S-nitrosylation of proteins. When
GSNOR is down-regulated, although the quantity of GSH is
sufficient to transform NO to the substrate GSNO, the
catalytic reaction cannot be carried out in the absence of
GSNOR, so the accumulated GSNO results in the elevation
of Pro-SNOs. This mechanism showed a novel role of GSH
in maintaining intracellular RSNO levels.

There is growing evidence supporting the notion that
RSNO can function as an intermediate in NO signaling
processes independent of the classical NO-guanylate cyclase
signaling pathway. Our results suggest that S-nitrosylation of
proteins is the checkpoint in susceptibility of neuronal R2
cells to NO, as well as in CGNs. The cell fate — either death
or survival — is determined by how the formed Pro-SNOs are
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Fig. 6 The susceptibility of S-nitrosoglutathione reductase (GSNOR)
RNAi-cerebellar granule neurons (CGNs) to S-nitrosoglutathione
(GSNO). (a) and (b) Green fluorescent protein (GFP) imaging of CGNs
transfected with negative control shRNA annealed oligonucleotide and
GSNOR-interfering sequences, respectively. (c) and (d) Hoechst
33342 staining in negative control and GSNOR RNAIi-CGNs,
respectively. (e) The quantitative apoptosis of transfected CGNs.
*p < 0.05 as compared with the negative control. More than 200 cells
were counted in each group. All data were shown as the means + SD,
n=3.Bar=5pum.

subsequently processed. In the BSO/GSNO'/Vc' cells,
RSNOs are reduced to thiols (—SH), and cells survive. On the
other hand, in the BSO"/GSNO"/Vc™ cells, RSNO levels
continue to fall with increasing levels of reactive oxygen
species (Data not shown), thereby leading to further oxidi-
ation to form mixed disulfides (SSR) and cysteine sulfinic
acid (SOH) (Fig. 2) and consequently cells die. These results
are consistent with the previous report that formation of the
S-NO bond is likely to accelerate disulfide formation
(Arenelle and Stamler 1995). It has been reported that the
glycolytic intermediate 3-phosphoglycerate decreases die-
thylenetriamine/NO -induced necrosis and increases apopto-
sis (Borutaite and Brown 2003). Comparing this with our
work, down-regulation of Pro-SNOs with Vc rescued cells
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from necrosis to survival. We deduced that there are multiple
pathways involved in neuronal cell death apart from the
depletion of ATP as a result of the inhibition of glycolysis
that was discussed in a previous report (Borutaite and Brown
2003). The burst in S-nitrosylation of cellular global proteins
and its further oxidization results in the dysfunction of
multiple cellular signaling pathways and leads to neuronal
cell necrosis.

The proposed mechanism concerning the elevation of Pro-
SNOs and its cellular effects is shown in Fig. 8.

We also noticed that GSH-ethyl ester and Vc both
protected BSO-treated R2 cells against NO neurotoxicity
(Figs. 2b, 4b). However, the underlying mechanism appears
to be distinct for these two molecules: in Vc-treated cells,
RSNO first increased and then decreased (Fig. 2a); whereas
in GSH-ethyl ester-treated cells, RSNO did not increase at all
(Fig. 4c). GSH-ethyl ester exerted its effect before RSNO
was formed. In contrast, Vc assists the direct decomposion of
RSNO after RSNO has been formed. The observation of two
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Fig. 8 The mechanism of increase in S-nitrosylation of proteins and
the consequent cellular effects. V-SH: thiols of low molecular weight
species, A—SH: thiols of proteins. When the cellular redox status is
impaired or the S-nitrosoglutathione reductase (GSNOR) level is
insufficient, nitric oxide (NO) cannot be metabolized to ammonia,
resulting in a burst increase in nitrosylation of multiple proteins. In the
presence of an —SNO decomposer, such as Vc, S-nitrosothiols (RSNO)
are reduced to thiols (-SH), and cells survive. On the other hand, in the
presence of ROS, RSNO are further oxidized to mixed disulfide (-SSR)
and cysteine sulfenic acid (-SOH) and cells undergo necrosis.

mechanisms implies two distinct pharmacological strategies
to regulate the susceptibility of neuronal cells to NO: either
inhibiting the formation of RSNO or the direct decomposi-
tion of RSNO.

The loss of GSH is regarded as a marker in the aging
process and several neurodegenerative diseases (Schulz
et al. 2000). For example, in patients with Parkinson’s
disease, the levels of GSH are reduced in nigra dopamin-
ergic neurons and glia cells (Pearce ef al. 1997; McNaught
and Jenner 1999; Mytilineou ef al. 1999). In schizophnenic
patients, the levels of GSH in the frontal cortex decreased
52% (Schulz et al. 2000). Our results will be helpful in
understanding the details of the high susceptibility of
neuronal cells to NO in these circumstances, particularly the
biochemical variation and the cellular response. Either
inhibition or reversal of the abnormal increased levels of
nitrosylated proteins may provide a route for the therapy of
neurodegenerative diseases and anti-aging. Screening nat-
ural products either for activity as anti-S-nitrosylation
agents or for increasing the activity of GSNOR may be a
useful approach to identify compounds of therapeutic value
in these circumstances.

In conclusion, our results firstly demonstrate that the
burst of S-nitrosylation is the “checkpoint” of cell fate.
Secondly, we introduced a novel mechanism that explains
why Pro-SNOs significantly increased in GSH-depleted
neuronal cells. Here we emphasize that the key point of
the elevation of Pro-SNOs is the consequence of the
impairment of the metabolism of NO. At the same time,
we found that GSH-ethyl ester and Vc play protective
roles through totally different mechanisms. GSH-ethyl ester
confers protection by inhibiting the elevation of Pro-SNOs,
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whereas Vc confers protection by reducing Pro-SNOs to
free thiol proteins. Our evidence indicates a novel
mechanism underlying the susceptibility of neuronal cells
to NO, and suggests some potential strategies to prevent
the NO-mediated neurotoxicity by the regulation of protein
S-nitrosylation in the circumstance of cellular redox
disturbance.
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