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In protein identification through tandem mass spectrometry, it is critical to accurately predict the
theoretical spectrum for a peptide sequence. The widely used prediction models, such as SEQUEST
and MASCOT, ignore the intensity of the ions with important neutral losses, including water loss and
ammonia loss. However, ignoring these neutral losses results in a significant deviation between the
predicted theoretical spectrum and its experimental counterpart. Here, based on the “one peak, multiple
explanations” observation, we proposed an expectation-maximization (EM) method to automatically
learn the probabilities of water loss and ammonia loss for each amino acid. Then we employed these
probabilities to design an improved statistical model for theoretical spectrum prediction. We
implemented these methods and tested them on practical data. On a training set containing 1803 spectra,
the experimental results show a good agreement with some known knowledge about neutral losses,
such as the tendency of water loss from Asp, Glu, Ser, and Thr. Furthermore, on a testing set containing
941 spectra, the improved similarity between the experimental and predicted spectra demonstrates
that this method can generate more reasonable predictions relative to the model that ignores neutral
losses. As an application of the derived probabilities, we implemented a database searching method
adopting the improved theoretical spectrum model with neutral loss ions estimated. Experimental results
on Keller’s data set demonstrate that this method can identify peptides more accurately than SEQUEST.
In another application to validate SEQUEST’s results, the reported peptide-spectrum pairs are reranked
with respect to the similarity between experimental and predicted spectra. Experimental results on
both LTQ and QjSTAR data sets suggest that this reranking strategy can effectively distinguish the false
negative predictions reported by SEQUEST.

Keywords: protein identification • tandem mass spectrum • expectation-maximization • neutral loss
probability

1. Introduction

Tandem mass spectrometry (MS/MS) has become a powerful
tool for the sensitive and high-throughput identification of
proteins.1,2 In a typical MS/MS experiment, proteins of interest
are first selected and digested into peptides with an enzyme
such as trypsin. Then, these generated peptides are separated
in a mass analyzer according to their mass to charge ratio (m/z
value). During the subsequent collision-induced dissociation
(CID) step, these peptides are further fragmented and ionized
into a set of ions. The m/z value and intensities of these

generated ions are measured and recorded as an experimental
MS/MS spectrum.3

To date, database searching is one of the widely used
methods for peptide identification. A typical database searching
method starts by constructing a theoretical spectrum for each
peptide in a protein database, then adopts a scoring function
to compare this theoretical spectrum with the experimental
one, and finally reports the peptides with a score above a
threshold as potential solutions.2–10 Theoretical spectrum
prediction is important to database searching since an inac-
curate theoretical spectrum will prevent positive protein
identification.

1.1. Related Work. There are mainly two types of theoretical
spectrum prediction models: one is the chemical kinetic model
to simulate the peptide fragmentation process,11 and the other
is the statistical model to learn the rules of the spectrum
generation process. For example, Dancik et al. introduced the
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offset frequency function to learn the ion type tendency and
the intensity threshold from experimental spectra.3,8 To com-
prehensively study the factors influencing the peptide frag-
mentation process, Schutz et al.12 fitted training spectra into a
linear model, which takes into consideration amino acid type
and their position in the peptide. Yates et al.1 attempted to
identify a statistical trend in spectrum peak intensities, includ-
ing the relationship between the peak intensity and ion type
and a specific amino acid’s preference for cleavage on its
N-terminal or C-terminal bond, etc.4 Applying a probability
decision tree approach, Elias distinguished important factors
influencing spectrum generation from a total of 63 attributes
of peptide composition and fragmentation.13 On the basis of
expert observations, Huang proposed a rule-based program to
enhance cleavage intensity for some specific amino acids and
showed its success in peptide identification.14 The above
studies help both the understanding of the complicated
fragmentation process and the accurate prediction of theoreti-
cal spectra.

There exist some difficulties which hinder an accurate
prediction of the theoretical spectrum. First, some atoms have
frequently occurring isotopes, causing the isotopic shift, i.e.,
about 1 Da heavier than the common monoisotope. Therefore,
an ion may form a series of isotopic peaks because it contains
a few heavier isotopic atoms. Second, the frequently observed
neutral losses, i.e., loss of a water or an ammonia, lead to some
new ions with a 17 or 18 Da deviation from the original ion,
respectively.15 These neutral losses are particularly important
to tryptic peptides since the C-terminal Arg or Lys often leads
to abundant y ions with ammonia loss.16

Even though the above-mentioned difficulties are identified,
little attention has been given to them, especially to deriving
the neutral loss probabilities for amino acids and predicting
intensities for ions with neutral losses. Without this quantitative
understanding of the spectrum generating process, the widely
used database searching algorithms, such as SEQUEST17 and
MASCOT,18 adopt a simple fragmentation model to predict the
theoretical spectrum. For example, SEQUEST assumes that
cleavage will occur at peptide bonds in a uniform manner and
simply ignores the influence of neutral losses. Ignoring the
influence of neutral losses, however, will result in a significant
deviation between the predicted spectrum and the experimen-
tal one. This paper addresses the neutral losses probability

learning problem and how to incorporate these probabilities
into a statistical model to accurately predict the theoretical
spectrum.

1.2. Our Contributions. Our contributions within this paper
are as follows:

First, we proposed an EM method to derive the neutral loss
possibilities for amino acids, including ammonia loss and water
loss. This method is based on the “one peak, multiple explana-
tions” observation; i.e., the ion with an offset of -17 Da from
a b ion has two sources: one is an ammonia loss, and the other
is a water loss along with an isotopic shift. Experimental results
showed a good agreement with some known knowledge on
mass spectra, such as that the tendency to lose water for Asp,
Glu, Ser, and Thr is much higher than that for other amino
acids.

Second, we used these probabilities to design an improved
model for theoretical spectrum prediction. In this model,
theoretical intensity is estimated for the ions with neutral losses.
Experimental results on a testing data set demonstrate that this
model can generate a more complete and more realistic
theoretical spectrum relative to the model that simply ignores
the neutral losses.

Third, as an application of the derived probabilities, we
implemented a direct database searching package, called PIEM,
in which the intensities of the neutral loss ions are estimated
by using the derived probabilities. On an ESI data set provided
by Keller,19 we performed comparison of PIEM with SEQUEST
and PI, the original version with neutral loss ions ignored.
Experimental results suggest that PIEM can identify peptides
more accurately than SEQEUST does.

In addition, we applied this prediction model to distinguish
the false positive peptide identification in SEQUEST’s output.
For each peptide sequence reported by SEQUEST, we used our
model to predict the theoretical spectrum and reranked the
peptide identification results according to the similarity be-
tween the theoretical spectrum and the experimental coun-
terpart. On both LTQ and QjSTAR spectra sets, this reranking
technique shows its power to distinguish the false positive
identification of SEQUEST.

We implemented these algorithms into an open source
package PI (Peptide Identifier), which can be freely downloaded
from http://www.bioinfo.org.cn/MSMS/.

Figure 1. Probability of ammonia loss for each amino acid.

Water and Ammonia Loss for Amino Acids from Tandem Mass Spectra research articles

Journal of Proteome Research • Vol. 7, No. 01, 2008 203

http://pubs.acs.org/action/showImage?doi=10.1021/pr070479v&iName=master.img-001.jpg&w=339&h=187


2. Methods

In this section, we formulated the neutral loss probability
learning problem into an optimization model. On a training
data set, this optimization problem aims to derive the neutral
loss probabilities by maximizing the likelihood that a peptide
generates its paired experimental spectrum. Before describing
the optimization model, we give a brief introduction to the ion
generating process and neutral losses first.

2.1. Ion Generating Process and Neutral Losses. According
to the widely accepted mobile proton hypothesis, an ion is
generated as described in the following two steps: the migration
of the ionizing proton to an amide carbonyl oxygen along the
peptide backbone and the cleavage of the N-terminal bond to
this amide carbonyl oxygen. The peptide bond cleavage forms
a b ion or a y ion, which depends on whether the N-terminus
or C-terminus retains the ionizing proton. Occasionally, an a
ion is generated from a b ion by loss of a carbon monoxide.
Other possible backbone ions, such as c, x, or z ions, are not
typically generated under the low-energy CID conditions.4,20,21

Both the b ion and the y ion usually have a few variants since
some amino acids in the peptide may lose a water or an
ammonia. For a charged peptide, the water loss may be
generated by dehydrating the -COOH group of the C-terminal
Asp or the side chain of Ser or Thr. It has also been observed

that the N-terminal Glu may lose a water. Compared with the
water losing process, the pathway leading to ammonia loss is
much simpler. It has been reported that the ammonia loss
occurs on the side chain of Asn, Gln, Lys, and Arg. Since none
of the above pathways dominate the spectrum generating
process for all the peptides, deriving a quantitative probability
of neutral losses for each amino acid will deepen the under-
standing of neutral losses and improve prediction of the
theoretical spectrum as well.21

2.2. Neutral Losses Probability Deriving Problem. Let us
introduce some notations before describing the formal opti-
mization model. Let A ) {a1, a2, ... a20} be the amino acid set,
with each amino acid a∈A having a molecular mass m(a). For
a peptide P ) p1p2 ... pn, pi ∈ A, the cleavage at the ith bond
between Pi and Pi+1 generally forms two ions. One ion is bi

with mass |bi| ) 1 + ∑ 1ejei m(pj) , and the other ion is Yn-i

with mass |yn-i| ) 19 + ∑ i+1ejen m(pj) . Additionally, a b
ion with mass x generally has a series of variants, including an
ion with mass x - 18 by losing a water, an ion with mass x -
17 by losing an ammonia, and an isotopic ion with mass x +
1. So do the y and a ions.

We use a pair of numbers, (x,h), to denote an ion (also called
a peak) in an MS/MS spectrum. In this pair, x is the ion mass,
and h is the ion intensity. Thus, the spectrum can be repre-

Figure 2. Probability of water loss for each amino acid.

Figure 3. Distribution of correlation scores between experimental spectra and theoretical spectra. (a) The distribution acquired from
the training set. (b) The distribution acquired from the testing set. (c) The distribution acquired from the testing set but with neutral
loss ions ignored. The correlation scores were calculated by using Pearson correlation coefficient (see formula 2).
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sented as a peak list S ) {(xi, hi)|1 e i e M}, where M is the
mass of the precursor ion.

For each amino acid ai, let Pr(NH3|ai) be the probability for
this amino acid to lose an ammonia, Pr(H2O)|ai) be the
probability to lose a water, and Pr(ISO|ai) be the probability of
an isotopic shift. For a peptide P + p1p2 ... pn, pi ∈ A, the
cleavage occurring at the ith bond will form an ion with mass
|bi| - 17 with probability

∑
k)1

i

(Pr(NH3|Pi) ∏
t)1,t*k

i

(1-Pr(NH3|pi)) (1)

The probabilities of forming an ion with mass |bi|, |bi| + 1,
|bi| - 18 can be calculated similarly. Therefore, the spectrum
generating process, in which many copies of the tested peptide
are fragmented into ions, can be treated as a repeat trial under
the reasonable assumption that fragmentations of different
copies of the peptide are mutually independent. Since each
trial produces an ion with a fixed probability, the number of
ions observed at different mass conforms to a multinominal
distribution. Here, for the simplicity of presentation, we simply
but reasonably use the peak intensity hi as the number of ions

with mass xi.
22 More complex estimations, such as log(hi), can

also be used without major changes to our algorithm.

The neutral losses probability deriving problem can be
formally described as follows:

given a total of K pairs of peptides and the matched tandem
mass spectra M ) {(P1, S1), (P2, S2), ..., (Pk, Sk)}, derive the
parameters θ ) {Pr(NH3|ai), Pr(H2O|ai), Pr(H2O|ai)} to maximize
the likelihood Pr(M|θ).

2.3. EM Method to Derive Probability of Neutral Losses.
Our EM method to derive these probabilities is based on the
one peak, multiple explanations observation; i.e., the peak with
an offset of -17 Da from a b ion has two sources, an ammonia
loss at an amino acid and a water loss along with a 1 Da
increase of mass by an isotopic shift. The neutral loss prob-
abilities can be reasonably estimated by determining the
contribution of each source to these specific peaks.

For the simplicity of representation, only b ions are consid-
ered in the description of our algorithm; y ions are similar and
thus omitted in the description. Let bi,j be the intensity of the
jth b ion of spectrum Si and bi,j

(d) be the intensity of the peak
with an offset d to bi,j. Let the hidden variables be denoted as

Figure 4. Experimental (above the axis) and theoretical spectra (below the axis) for peptide LDSSAVLDTGK. (a) Theoretical spectrum
containing neutral loss ions with intensities estimated by our EM model. Correlation score ) 0.702 (b). Theoretical spectrum with the
neutral loss ions ignored. Correlation score ) 0.567.

Figure 5. Distributions of the PIEM score (a) and ∆Cn (b) acquired from a validation data set. The validation data set contains 5000
spectra randomly selected from the 18 696 doubly charged spectra provided by Keller. The correct hits are shown in red, and the
incorrect ones are shown in black.
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{ Wi,j,Ai,j,Ni,j,1
(1) ,Ni,j,2

(1) ,... Ni,j,j
(1) } where Wi,j is the contribution of

water loss to bi,j
(-17); Ai,j is the contribution of ammonia loss to

bi,j
(-17); and Ni,j,k(1 e k e j) is the contribution of the kth amino

acid of peptide Pi to bi,j(1).
E-Step. We estimate the expectation of these hidden vari-

ables as follows:
First, Wi,j and Ai,j are estimated as follows

Wi,j ) bi,j
(1) · w

w+ a

where

W) [∑
k)1

j

Pr(ISO|ai,k) ∏
t)1,t*k

j

(1-

Pr(ISO|ai,k))][∑
k)1

j

Pr(H2O|ai,k) ∏
t)1,t*k

j

(1-Pr(H2O|ai,k))]

a) [∏
k)1

j

(1-Pr(ISO|ai,k))][∑
k)1

j

Pr(NH3|ai,k) ∏
t)1,t*k

j

(1-

Pr(NH3|ai,t))]

Hence, the number of the ions with an isotopic shift is Ni,j(1),
and the number of the ions without an isotopic shift is Ni,j.
Here

Ni,j
(1) )Wi,j + bi,j

(-16) + bi,j
(1)

Ni,j ) bi,j
(-18) +Ai,j + bi,j

Then, Ni,j,k
(1) (1 e k e j) is estimated as follows

Ni,j,k
(1) )Ni,j

(1) ·
γ(ai,k)

∑ t)1

j
γ(ai,k)

where

γ(ai,t))
Pr(ISO|ai,t)

1-Pr(ISO|ai,t)

M-Step. On the basis of the estimation of these hidden
variables, we computed θ to maximize the likelihood by solving
the following formula

Pr(ISO|at)

1-Pr(ISO|at)
)

∑
i)1

K

∑ k)1,ai,k)at

|pi| ∑ j)k

|pi|
Ni,j,k

(1)

∑ i)1

K ∑ k)1,ai,k)at

|pi| ∑ j)k

|pi|
Ni,j

Pr(NH3|at) and Pr(H2O|at) can be calculated similarly and are
thus omitted here.

3. Results

3.1. Estimating the Probabilities of Water Loss and
Ammonia Loss. In this experiment, we applied the EM method
to estimate the probabilities of water loss and ammonia loss for
amino acids. A spectra data set downloaded from PeptideAtlas,
known as A8jIP,23 was used to derive the probabilities. The spectra
in A8jIP were obtained from the Human Erythroleukemia K562
cell line through an LCQ Classic ion trap mass spectrometer and
were converted into DTA format by using TurboSequest. In
addition, each spectrum in A8jIP has been annotated with a
matched peptide by SEQUEST and Peptide-Prophet.19

In this proof-of-concept experiment, we restricted our
analysis to the doubly charged spectra with a peptide-prophet
score above 0.8. As results, we obtained a benchmark data set
consisting of 2744 high-confidence peptide-spectrum pairs.
These peptide-spectrum pairs were further randomly divided
into two disjoint subsets: one is a training set with 1803
peptide-spectrum pairs, and the other is a testing set with 941
peptide-spectrum pairs (see http://www.bioinfo.org.cn/MSMS/
for the Supporting Information.)

On the training set, we applied the EM method described in
Section 2 to derive neutral loss probabilities for each amino
acid (see Figures 1 and 2). From Figure 1, it can be observed
that some amino acids have a high ammonia loss probability,
i.e., Asn(0.2), Gln(0.119), and Arg(0.1), while the others have a
relatively lower probability to lose an ammonia. This observa-
tion is consistent with the reaction pathway analysis reported
by Paizs and Suhai.16,21

Figure 2 shows the water loss probability for each amino
acid, which supports the theoretical and practical observation
that Asp(0.1) and Glu(0.081) tend to lose a water from the
-COOH group in its backbone and that Ser(0.15) and Thr(0.157)
often lose a water from its side chain. In addition, we also note
that other amino acids, such as Gly(0.11) and Asn(0.08), may
also lose a water.

3.2. Theoretical Spectrum Predicting. For a given peptide
P, its theoretical spectrum is predicted through simulating the
fragmentation process. More specifically, the number of events
at each peptide bond is estimated by PI,24 a statistical frag-
mentation model, and the intensity of the ions with neutral
losses are estimated using Formula 1. Since the effective
temperature of the peptide fragmentation process is unknown
under general circumstances,16 we adopted a rough assumption
that a cleavage event generates an N-terminal ion and a
C-terminal ion with equal probability.

In this paper, we adopted the following Pearson correlation
coefficient function25 to measure the similarity between a
theoretical spectrum t and its experimental counterpart e

correlation score)
∑ i

(si
e - si

e)(si
t - si

t)

�∑ i
(si

e - si
e)2∑ i

(si
t - si

t)2

, whereas si
e )

∑ i
si

e

∑ i
1

, si
t )

∑ i
si

t

∑ i
1

(2)

Here si
e represents the intensity of the ion with an m/z value

of i in the experimental spectrum e, and si
t represents the

intensity of the same ion in theoretical spectrum t. Since an
experimental spectrum always has more peaks than its theo-
retical counterpart, only the common peaks shared by these
two spectra are considered in calculating the above correlation

Figure 6. FDR Curves of the SEQUEST (∆Cn) threshold 0.29 (blue),
SEQUEST (∆Cn) threshold 0.10 (black), PI (green), and PIEM (red).
The x-axis denotes the number of reported hits, and the y-axis
denotes the false positive rate.
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score. Though the shared ion counts vary according to spectra
and peptides, the Pearson correlation coefficients are compa-
rable since they have been normalized.

To validate the parameter estimation of our EM method, we
compared two correlation score distributions: one is from the
training data set, and the other is from the testing data set (see
Figure 3a and 3b). In both cases, the theoretical spectra contain
neutral loss ions with intensities estimated by the EM method
in this paper. From Figures 3a and 3b, we can see that the
correlation score achieves a mean of 0.714 and a standard
deviation of 0.144 on the training set and a mean of 0.714 and
a standard deviation of 0.143 on the testing set. The similarity
between these two distributions demonstrates the validity of
this prediction method.26

To evaluate the effect of estimating intensities for the neutral
loss ions, we first predicted theoretical spectra with neutral loss
ions ignored, and then compared these theoretical spectra with
the experimental spectra (see Figure 3c). In this case, the
correlation score has a mean of 0.58, which is lower compared
with the case considering neutral loss ions (see Figure 3b). As
a concrete example, the theoretical spectrum was predicted for
peptide “LDSSAVLDTGK” and shown in Figure 4a. In Figure
4b, a control case is shown where the ions with neutral losses
are ignored. In the first case, the correlation score between the
theoretical and experimental spectra is 0.702, while the cor-
relation score is only 0.567 in the second case.

We obtained similar observations when using another
spectrum similarity measure, called the Jensen-Shannon di-
vergence,27 instead of the correlation score. These results
suggest that considering neutral loss ions will improve the
quality of the theoretical spectrum prediction.

3.3. Database Searching with Neutral Loss Ions
Estimated. As an application of the neutral loss probabilities,
we implemented a direct database searching package, called
PIEM, in which the intensities of the neutral loss ions are
estimated by using the derived probabilities. On an ESI data
set provided by Keller,19 we performed a comparison of PIEM

with SEQUEST and PI, the original version with neutral loss
ions ignored.

The data set contains spectra generated from 22 different
LC/MS/MS runs on a sample of 18 known nonhuman proteins
mixed in varying concentrations. Each spectrum was searched

by SEQUEST against a human protein database with the known
protein sequences appended. The top scoring peptide hits
against the known 18 proteins, suffering a further manual
verification, and were labeled as correct, and the hits to human
proteins were labeled as incorrect. In this experiment, we
restricted our analysis to the 18 496 doubly charged spectra.

The thresholds of PI and PIEM were set based on the
distributions of the Jensen-Shannon divergence score and
∆Cn, the score difference between the first hit and the second
hit. Specifically, on a validation set with 5000 spectra randomly
selected from the data set, the distribution of the Jensen-
Shannon divergence score and ∆Cn are calculated and shown
in Figure 5. From this figure, we can see that there is an obvious
gap between the score distributions for correct and incorrect
hits. The incorrect hits have a biased ∆Cn distribution, while
the correct hits have a uniform ∆Cn distribution. On the basis
of these observations, we set the Jensen-Shannon divergence
score threshold to be 0.43, the cross-point of the two score
distributions, and the ∆Cn threshold to be 0.05, which can filter
out most incorrect hits. For SEQUEST, we adopted two widely
used threshold configurations, i.e., ∆Cn > 0.1 and ∆Cn > 0.29.

We compared the direct database searching performance of
PIEM with SEQUEST and PI. The performances are measured
using false discovery rate (FDR), i.e., the ratio of incorrect hits
reported. As illustrated by Figure 6, when we control FDR to
be 0.1, PIEM returns 10% more hits than SEQUEST with a ∆Cn
threshold of 0.1 and 26% more than SEQUEST with a ∆Cn
threshold of 0.29. Similar observations were obtained when
FDR was set to other levels, such as 0.05 or 0.15. Take spectrum
sergei_digest_B_full_5.2054.2054.2.dta as a concrete example.
This spectrum was incorrectly matched to peptide WDNLIYY-
ALGGHK by SEQUEST (Xcorr: 1.6753; SEQUEST ∆Cn, 0.19). In
contrast, PIEM correctly matched this spectrum to peptide
TAGWNIPMGLLYSK (PIEM score, 0.34; PI ∆Cn, 0.13). In other
words, if considering the same number of top hits, PIEM shows
a higher accuracy than SEQUEST and PI.

3.4. Improving SEQUEST by Identifying False Positive
Matching. As another application, this improved prediction
model can also be used to validate the peptide identification
results. During protein identification, SEQUEST compares each
given spectrum against peptides in a database and reports a
set of peptide-spectrum pairs ordered by their confidence

Figure 7. Comparison of ROC plots for SEQUEST (black line), PI (green line), and PIEM (red line) (a). ROC curves on the Q_STAR data
set. (b). ROC curves on the LTQ data set. The horizontal axis of a ROC curve is false positive rate ) FP / (FP+TN) and the vertical
axis is true positive rate) TP / (TP+FN) , where FP is false positive number; TN is true negative number; TP is true positive
number; and FN is false negative number.
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scores. However, since SEQUEST employs a simple theoretical
spectrum prediction model, there are always false positive pairs
in the identification results. Here, we attempt to improve
peptide predictions by identifying these false positive pairs.
More specifically, for each peptide-spectrum pair reported by
SEQUEST, we first predict its theoretical spectrum by using the
fragmentation model PI24 and by using the EM model in this
paper. Then we calculate the Jensen-Shannon divergence
scores12 between this theoretical spectrum and its experimental
spectrum. We rerank the peptide identification results accord-
ing to this score and report the pairs that have low Jensen-
Shannon divergence scores. Ideally, the false positive pairs will
be given relatively high scores.

We tested this reranking strategy on two spectrum data sets
downloaded from Gygi laboratory:13 one is an LTQ spectrum
data set, and the other a QjSTAR spectrum data set. Among the
peptide-spectrum pairs reported by SEQUEST, the false posi-
tive pairs have been identified through the reverse-database
technique;28 that is, a peptide-spectrum pair is thought to be
false positive if the peptide is from the reverse database. We
used this reverse-database technique to benchmark our method.
Specifically, for the LTQ spectrum set, SEQUEST reports 8639
peptide-spectrum pairs. We used the first 2000 pairs to train
our EM model and used the rest as a testing set (6639 pairs, 56
of them have been labeled false positive by the reverse-database
technique). Similarly, in the 5865 peptide-spectrum pairs
reported by SEQUEST for the QjSTAR data set, we chose the
first 2000 pairs as a training set and the rest as a testing set
(3865 pairs, 242 of them have been labeled as false positive).

We compared SEQUEST, PI, and PIEM. The relationship
between the false positive rate and the true positive rate is
graphically shown in Figure 7 as receiver-operating character-
istic (ROC) plots. From Figure 7a, we can see that when we
control the false positive rate to be 0.05 PIEM has a significantly
higher true positive rate (0.83) than SEQUEST (0.6) and PI
(0.55). Figure 7b suggests similar results. In summary, these
ROC curves demonstrate again that the EM method can
increase the accuracy of peptide identification by taking neutral
losses into consideration, and this reranking technique can
discriminate between correct and random matches when
validating the results from SEQUEST.

4. Conclusion and Discussion

An accurate prediction of the theoretical spectrum is im-
portant to improve the accuracy of identification using data-
base searching methods. However, this process requires the
full understanding of the fragmentation process and neutral
losses. The EM model in this paper shows that the prediction
of ions with neutral losses is feasible and can improve the
peptide identification.

Currently, we have not taken the charge-remote fragmenta-
tion pathway into consideration and have restricted our efforts

on the peptides with two charges. How to incorporate those
factors in PI remains an open problem.
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