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Abstract Increasing evidence has been gathered for p53-

dependent apoptosis, but it is still unclear how p53 initiates

apoptosis by employing its transcriptional program. Pair-

wise interactions of p53 with expression of other genes fail

to predict p53 levels or rate of apoptosis. A more sophis-

ticated approach, using neural networks, permits prediction

of interaction among three or more genes (p53, bax, and

ING1). These interactions are decidedly nonlinear. Careful

measurements and advanced mathematical treatments will

permit us not only to understand how expression of pro-

and anti-apoptotic genes is regulated, but also to integrate

cross-platform and cross-experimental data for the valida-

tion of predicted interactions.

Keywords Thymocyte apoptosis � p53 � Bax �
ING1 � Neural network � Normalization

Abbreviations

NO Nitric oxide

GSNO S-Nitrosoglutathione

Dex Dexamethasone

Introduction

Thymocyte positive/negative selection is a crucial stage in

development of thymocyte, and negative selection plays a

key role in T cell developing process via thymocyte

apoptosis pathway within thymus. Thymocyte apoptosis is

an intricate process coupled with negative selection

depending on integrated diverse endogenous and exoge-

nous signals to sustain homeostasis in the immune system.

Nitric oxide (NO) and its donors S-nitrosoglutathione

(GSNO) are able to induce immune cell apoptosis, such as

macrophages, thymocytes, lymphocytes and endothelial

cells via various signal pathways, especially via S-nitro-

sylation/denitrosylation as a reversible redox switch [1].

GSNO-derived NO concentration in immune cells plays a

significant role in determining thymocyte fate: whether

GSNO-induced thymocyte apoptosis or the inhibition of

apoptosis implying immature thymocyte survival to

develop T lymphocyte. The mechanisms on GSNO-
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initiated mouse thymocyte apoptosis involve the intricate

regulations of various genes, among which tumor sup-

pressor gene p53 plays a vital role during the processes of

apoptosis [2].

It is indicated that when the apoptosis pathway is trig-

gered, p53 undergoes numerous modifications that result in

its stabilization and accumulation in the cell [3]. p53 not

only regulates the expression of numerous downstream

pro-apoptotic genes (e.g., bax, noxa, puma, bid and cd95)

in the nucleus, but also accumulates in the cytoplasm and

directly activates the pro-apoptotic protein BAX [4]. The

gene bax is a direct transcriptional target of transcription

factor p53, and bax deficiency decreases apoptosis and

accelerates oncogenesis [4–6]. The tumor suppressor gene

ING1 has also been studied extensively. It shares many

biological functions with p53, such as growth arrest and

apoptosis [7, 8]. As a component of the p53 signaling

pathway, ING1 can cooperate in parallel with p53 in cell

cycle and apoptosis control [9, 10], and positively regulate

the expression levels of the downstream gene bax [11, 12].

Although growing evidence has been gathered for p53-

dependent apoptosis, it still remains largely unclear how

p53 initiates apoptosis by employing its transcriptional

program through a complex interdependent regulatory

network [13]. It is a common practice to characterize the

regulation in an ‘‘all-or-none’’ manner: the role a gene

plays in certain cell line or biological processes is char-

acterized as either ‘‘independent’’ or ‘‘dependent’’; the

relation between genes is characterized as either ‘‘corre-

lated’’ or ‘‘uncorrelated’’. However, such an approach may

not be adequate for the comprehension of intricate regu-

latory networks, especially when a much more subtle

quantitative interrelationship among multiple genes and

their corresponding products are examined and interro-

gated through technologies, such as quantitative real time

PCR and microarray.

In this study, we examined the complex molecular

mechanism of GSNO-induced mouse thymocyte apoptosis

at molecular level via S-nitrosylation proteins and gene

expression of the related genes, p53, ING1 and bax. The

GSNO-induced mouse thymocyte apoptosis was detected

and confirmed with MoFlo cell sorter, and the expressions

of p53, ING1 and bax were measured with real time PCR

(the raw data of which were processed by our new nor-

malization method). Meanwhile, protein S-nitrosylation

was detected by biotin-switch and western blotting.

To quantify the characteristics of the cooperative

effect of p53 and ING1 in regulating the expression of

bax, we employed a statistical non-parametric conditional

expectation model via neural networks to identify the

nonlinear response surface that accurately predicted the

expression level of bax based on the corresponding p53

and ING1 levels. This regulatory network model was

trained based on our real time PCR data and showed

consistent cross-platform and cross-experimental perfor-

mance gain in predicting the expression of bax. When the

model was applied to four publicly available mouse

microarray data sets and pre-processed similarly using

our normalization procedure, similar consistency and

performance were displayed.

Such consistency suggests that, provided that proper

statistical models and methods are used for data prepro-

cessing and analysis, it is plausible to precisely quantify

the behavior of an individual gene product based on the

gene-expression patterns in a network of interacting gene

products. Here, we demonstrated that selecting the proper

features (explanatory and response variables) and nor-

malization methods for real time PCR and microarray

data is crucial in data analysis and interpretation. In this

study, we used relative gene expression measurements,

which show better consistency in cross-platform data [14,

15], and the baselines for cross-platform measurements

were also carefully adjusted.

Materials and methods

Experiments

Details on treatments and experiments are given in sup-

plementary Material (http://ctb.pku.edu.cn/*wanlin/result/

apoptosis/experiment_note.pdf).

Data

Raw data of our real time PCR are available from http://

ctb.pku.edu.cn/*wanlin/result/apoptosis/rawdata.xls.

All 4 mouse microarray data sets were obtained from

Gene Expression Omnibus (GEO) repository at the

National Center for Biotechnology Information (NCBI)

with the Accession No. GDS658 (thymocyte selection by

agonist [16], GSE2128 (thymocyte negative selection [17],

GSE3039 (innate vs. adaptive lymphocyte gene expression

[18]) and GDS882 (neuromedin U effect on type-2 Th cells

[19]). All these 4 studies were conducted on Affymetrix

platform GPL81. The expressions of ING1, p53 and bax

were obtained from probe-sets ‘‘94396-at’’ (ING1),

‘‘104154-at’’ (TRP53), and ‘‘93536-at’’ (bax), while the

expressions of beta-actin were obtained by taking the

averages of probe-sets ‘‘AFFX-b-ActinMur/M12481-3-at’’,

‘‘AFFX-b-ActinMur/M12481-5-at’’ and ‘‘AFFX-b-Actin-

Mur/M12481-M-at’’ (ACTB) of each sample.
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Pre-processing and normalization of real time PCR data

A novel normalization method for absolute quantification

data of real time PCR is described as follows with a step by

step procedure.

1. We perform a logarithm transformation to remove

nonlinear effect in the raw data [20]. The log-

transformed data shown in Fig. 1b are aligned more

closely to a regression line in each plot while the raw

data (Fig. 1a) are not.

2. For the log-transformed data, we conduct a novel

normalization algorithm based on a statistical linear

model with additive measurement errors [21]:

Xg
ki ¼ akSg

k þ bk þ eg þ ei
g ð1Þ

where genes are indexed by g, treatments k, replicated/

repeated measures i; Sg
k and Xg

ki denote the underlying and

the i-th observed expression level of gene g under condi-

tion k, respectively; the systematic parameters ak and bk are

gene-independent and account for the various differences

in intensity measures between experiments. For example,

ak is mainly for modeling amplification efficiency in real

time PCR experiments and bk for assay-to-assay baseline

drift. The eg accounts for variability between genes and ei
g

is measurement error between the individual experiments

within each gene g.

The underlying gene expression of beta-actin Sgb

k ;

commonly used as the reference gene for the entire

experiment, is considered biologically unchanged across

assays and is thus denoted as Sgb

. For gene g and beta-actin

gb, we have

Xg
kj ¼ akSg

k þ bk þ eg þ ei
g ð2a)

Xgb

kj ¼ akSgb

k þ bk þ egb þ ei
gb ð2b)

Sgb

k ¼ Sgb

8
>><

>>:

ð2Þ

Taking the ratio
2að Þ� 2bð Þ

2bð Þ� bkþegbð Þ, we can have

Xg
kj � Xgb

kj

Xgb

kj � bk þ egb

� � ¼
ak Sg

k � Sgb
� �

þ eg � egb

� �
þ ei

g � ei
gb

� �

akSgb þ ei
gb

¼ Sg
k

Sgb � 1

� �

þ
eg � egb

� �
þ ei

g � ei
gb

� �

akSgb þ o eð Þ

ð3Þ

where o(e) represents a term at the order of ei
gb , a small

quantity. Multiplying (3) by Xgb

ki � bk þ egb

� �h i
and denote

Sg
k

Sgb by Rg
k ; we can have

Xg
kj ¼

Sg
k

Sgb Xgb

kj � bk þ egb

� �h i
þ bk þ egb
� �

þ
eg � egb

� �
þ ei

g
� ei

gb

� �

akSgb Xgb

kj � bk þ egb

� �h i

¼ Rg
kXgb

ki þ 1� Rg
k

� �
bk þ egb

� �

þ
eg � egb

� �
þ ei

g � ei
gb

� �

akSgb akSgb þ ei
gb

� �

¼ Rg
kXgb

ki þ 1� Rg
k

� �
bk þ egb

� �

þ eg � egb

� �
þ ei

g � ei
gb

� �h i
1þ

ei
gb

akSgb

 !

¼ Rg
kXgb

ki þ 1� Rg
k

� �
bk þ egb

� �
þ o eð Þ: ð4Þ

Thus for replicate measures, the observed expression of

gene g is a linear function of that of the reference gene gb

with a constant slope Rg
k for intersection 1� Rg

k

� �
bk, plus a

residue term 1� Rg
k

� �
egb þ o eð Þ.

Normalize the real time PCR data for each sample based

on Eq. 4. We define the normalized relative expression

level as

Rgð Þki�
Xg

ki � 1� Rg
k

� �
bk

Xgb

ki

ð5Þ

where 1� Rg
k

� �
bk can be easily estimated as the intercept

of a linear regression model based on replicates Xgb

ki ;X
g
ki

� �

under the same treatment k.

Our normalization algorithm potentially highlights the

following advantages: (1) the statistical linear model in our

normalization algorithm was based on incorporating a

baseline drift term bk þ eg; which is not negligible in real

world data as shown in Fig. 2; (2) the normalization

algorithm only requires a small number of replicate/repe-

ated measures (usually 3–4 are sufficient); (3) the

normalized relative gene expression (Rg)ki does not depend

on the term ak, hence the effects of both amplification

efficiency and baseline drift are eliminated through our

normalization algorithm.

Pre-processing and normalization of microarray data

To perform cross-experiment and cross-laboratory data

fusion and meta-analysis, we took the following pre-pro-

cessing and normalization procedures that are crucial to

ensure the data from various sources are transformed so

that all the data sets share a common scale and baseline. A

normalization procedure similar to the above-mentioned

pre-processing step for real time PCR data was taken with

the following slight modification: Instead of using repeated

experimental data to estimate 1� Rg
k

� �
bk in formula (5),
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quantile normalization method [22] (‘‘normalize.quantile’’

function of ‘‘affy’’ package in Bioconductor (version 2.1))

was applied to the logarithm transformed microarray data

to remove the baseline bias term. Thus we can obtain the

normalized relative expression level simply as

Rgð Þk�
Xg

k

Xgb

k

ð6Þ

where Xg
k and Xgb

k are logarithm transformed and quantile

normalized values of gene g and beta-action in sample k.

To further align the microarray data to real time PCR

data so that the microarray data have the same gene-spe-

cific baseline as the real time PCR data, we performed a

cross-platform normalization by adjusting all four micro-

array data sets by the mean difference between the

untreated thymocyte samples in 4 microarray data and the

PCR data.

Statistical analysis

The neural network model was fitted with the function

‘‘nnet’’ in ‘‘MASS’’ package in R (version 2.6.1) with a

constraint of positive output. To avoid overfitting due to

the limited samples, we used a randomization technique in

the learning step to obtain 50 networks with random initial

values. The reported final neural network was obtained by

taking the mean of these 50 networks to achieve a reliable

and robust model. The two linear models were imple-

mented by the ‘‘lm’’ function in R. Source code of our

procedure is available upon request.

Results

Inducing thymocyte apoptosis by GSNO and

Dexamethasone (Dex)

We conducted various (Dex-treated, GSNO-treated, and

GSNO-L-NMMA-co-treated) treatments on mouse

Fig. 1 Plots of replicated copy numbers of genes of interest versus

those of gene beta-actin under different treatments. a Raw data from

real time PCR; b Logarithm transformed data. The line in each plot is

the linear regression line of the data in the plot

b

IN
G

1

p5
3

ba
x

IN
G

1

p5
3

ba
x

Untreated (1)

Untreated (2)

Untreated (3)

Dex (1)

Dex (2)

Dex (3)

Dex (4)

GSNO (1)

GSNO (2)

GSNO (3)

GSNO−L−NMMA (1)

GSNO−L−NMMA (2)

GSNO−L−NMMA (3)

GSNO−L−NMMA (4)

Expression level before and after nomalization

Before After

Fig. 2 Gene expression levels

before and after normalization.

Before: gene expression = log

(copy number of interested

gene)/log (copy number of beta-

actin). After: normalized gene

expressions by our algorithm

show consistent levels between

replicates of each gene within

treatment
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thymocyte to induce apoptosis [23]. Levels of thymocyte

apoptosis (percentage) detected by a MoFlo cell sorter

were untreated (2.6%), Dex-treated (16.1%), GSNO-trea-

ted (8.6%) and GSNO-L-NMMA-co-treated (7.8%).

Treatment with GSNO or GSNO-L-NMMA markedly

increased the apoptosis level with the latter being slightly

inhibited by L-NMMA. Meanwhile, Dex, as a positive

control [24], showed the strongest activity in inducing

apoptosis (Fig. 3a).

The expression of p53, ING1 and bax were measured by

real time PCR to the same thymocyte samples in parallel

(Fig. 3b). The expression levels of bax were in accordance

with the percentages of apoptosis: the higher the expression

levels of bax, the more progressive the apoptosis (Fig. 3).

Hence, the expression level of bax can be considered as an

indicator of the level of both Dex-induced and GSNO-

induced mouse thymocyte apoptosis.

Production of protein S-nirosylation in thymocyte

S-Nitrosylated proteins in the GSNO-treated thymocytes in

absent/present L-NMMA treated were detected by biotin-

switch and western blotting (Fig. 4). At least five S-nitro-

sylated protein bands are apparently seen in the apoptosis

thymocytes induced by GSNO. There is significant differ-

ence of protein S-nitrosylation between the untreated and

the GSNO-treated thymocytes. The protein S-nitrosylation

was significantly inhibited by the NOS inhibitor L-NMMA,

which is consistent with the protection of L-NMMA from

apoptosis. We also found that proteins of moderate

molecular weight (20–60 kDa) are more sensitive to GSNO

and are strongly S-nitrosylated. NO has long been known to

mediate cell death, and S-nitrosylation conveys a large part

of the influence of NO on cellular signal transduction by

affecting the activity, the conformation and the interaction

of proteins.

A novel algorithm for normalizing the raw real time

PCR data

Few methods were developed to normalize absolute

quantification data of real time PCR. We propose a novel

method here to normalize the raw data from real time PCR

(absolute quantification data). It can efficiently remove the

systematic variances and the baseline drafts by real time

PCR, and yields accurate relative expression levels with

small variance among replicated measurements.

Fig. 4 Analysis of S-nitrosylated proteins in thymocytes by biotin-

switch and western blotting method. S-Nitrosylated proteins are

labeled with arrows on the left and the molecular markers are shown

on the right. Lane 1, S-nitrosylated proteins in thymocytes without

GSNO treatment; Lane 2, S-nitrosylated proteins in thymocytes

treated with GSNO; Lane 3, S-nitrosylated proteins in thymocytes

treated with L-NMMA and GSNO. The results are representative of

three individual experiments

a

b

Fig. 3 Apoptosis and gene expression. a Apoptosis percentage

(mean ± SD) in different treatments measured by MoFlo cell Sorter.

Results are representative of three independent experiments per-

formed in triplicate. Error bars represent one SD; b Expression levels

of p53, ING1 and bax under untreatment, Dex-treatment, GSNO-

treatment and GSNO-L-NMMA-treatment
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We obtained the copy numbers of genes p53, ING1 and

bax, from real time PCR assays with 3–4 separated

experiments. Figure 1a shows the copy numbers of genes

of interest under the various treatments versus the copy

numbers of the housekeeping gene beta-actin. Large vari-

ability between replicates was shown in most plots, which

is due to the following effects: (1) nonlinear effects of the

amplification process and fluorescence detection; and (2)

varying experimental conditions, such as fluorescence

detection and baseline drift in replicated measures. While

the former can be taken care of with improved modeling,

the latter cannot be controlled even with the use of

endogenous genes, and thus needs to be adjusted compu-

tationally. We thus propose a novel normalization method

which takes into account the two effects and can also be

applied to microarray data (see ‘‘Materials and methods’’

for details).

Gene expressions between separated experiments

obtained by our normalization method have less variance

comparing those by the conventional method (Fig. 2). This

demonstrates that a suitable normalization method for real

time PCR data is crucial in effective data analysis and

interpretation, and expression levels of p53, ING1, bax

obtained by our algorithm are more reliable for further

analysis of the intricate gene interactions.

p53 and ING1 may cooperate to regulate bax

expression

Many studies have suggested that bax is a p53 primary-

response gene, involved in a p53-up-regulated pathway for

the induction of apoptosis [4, 5]. The expression of p53 and

bax increased the following all three apoptosis-inducing

treatments (Fig. 3b). However, p53 and ING1 increased the

most following the treatment with GSNO-L-NMMA, while

bax increased the least. Furthermore, p53 and bax show

few correlations in data set from our real time PCR

(Table 1). These findings seem to contradict the biological

results. The problem lies in that a nonlinear relationship

was characterized in a linear form (correlation coefficient

here), which leads to misleading results. All the above

experimental results suggest that bax is not regulated lin-

early by p53 or by ING1 alone, but rather through

cooperative interactions among the gene products in a

nonlinear network.

Nonlinear network model for p53 and ING1 regulating

bax

Recent studies employing neural network-like supervised

learning methods have successfully predicted the clinical

outcome of breast cancer [25] and multiple time-dependent

apoptotic responses [26]. These models are capable of

modeling several nonlinear relationships between the

response variable and the independent variables simulta-

neously through a set of flexible non-parametric statistical

models. These models suggest promising approaches to

explore molecular mechanism on thymocyte apoptosis

which is obviously nonlinear.

We modeled the regulatory network of these three genes

with a feed-forward neural network model: the expression

levels of the genes p53 and ING1 (independent variables)

as the inputs and the expression levels of bax as the output

(response variable). The feed-forward neural network has a

hidden layer of two units and was trained by the normal-

ized relative measurements from real time PCR data. The

response surface for bax was obtained with our neural

network model and demonstrates a nonlinear relationship

between p53 and ING1 in regulating bax cooperatively

(Fig. 5).
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Fig. 5 Response surface for Bax. Response surface for bax (z-axis)

by the inputs of p53 and ING1: Red dots, training data from real time

PCR assays; Green circles, the predicted bax for real time PCR assays

by the neural network model; Blue dots, testing data from real time

PCR assays (GSNO-SRS treatment); Blue circles, the predicted bax

for real time PCR assays of GSNO-SRS treatment by the neural

network model. Colored symbols present predicted levels for 4

microarray data by neural network model. Yellow 1 data set TS White

2 data set TN Cyan 3 data set IA Brown 4 data set NU

Table 1 Pairwise Pearson correlation coefficients of gene pairs

Gene pairs Pearson correlation coefficient P value

p53 and ING1 0.871 \0.0001

Gene expression 0.123 0.6748

ING1 and bax 0.248 0.3927

242 Apoptosis (2009) 14:236–245

123



Validations by cross-platform and cross-experimental

data

To avoid overfitting and to validate the neural network

response surface model constructed above, an independent

data from real time PCR and four completely independent

publicly available microarray data sets were used for

testing.

Sinapine was discovered for many years [27] and was

intensively studied in plants [28]. Sinapic acid shows

anxiolytic-like effects in mice [29]. To explore the role of

Sinapine in apoptosis, we measured the expression levels

of the 3 genes (p53, ING1 and bax) in mouse thymocytes

which were co-treated by GSNO and Sinapine of Raphani

sativus semen (SRS) with 4 separated experiments and

processed by the same procedures as our proposed method.

This data were used as our testing data.

Meanwhile, four publicly available microarray data sets

obtained from thymocyte and/or T cell studies were used

also. The four data sets were: thymocyte selection by

agonist (TS) [16], thymocyte negative selection (TN) [17],

innate vs. adaptive lymphocyte gene expression (IA) [18],

and neuromedin U effect on type-2 Th cells (NU) [19].

They were preprocessed as described in ‘‘Materials and

methods’’. It is shown that the expression level of bax

predicted by the response surface of neural network model

approximated very well the experimental data (Figs. 5, 6).

Furthermore, as comparisons, a linear model with p53 as

input and a linear model with p53 and ING1 together as

inputs were also constructed to predict the expression

levels of bax. These two linear models were also trained

with our real time PCR data. It is shown that the prediction

by the response surface of neural network model is much

better (Fig. 6).

Discussion

In this study, we explored the quantitative relationship

among the expression of three vital genes during mouse

thymocyte apoptosis. Both GSNO-induced and Dex-

induced apoptosis were investigated. The expression level

of bax was proportional to the rate of apoptosis under

various GSNO and Dex treatments. In examining the

relation between bax and its upstream genes p53 and ING1,

we found that bax is not regulated linearly on a one-on-one

basis, but rather by a gene network through nonlinear

cooperative interactions.

We employed a neural network response surface model

to characterize the nonlinearity present in the cooperative

interactions among the genes p53, ING1 and bax. This kind

of nonlinearity, however, has not been revealed so far in

most apoptosis studies utilizing microarray and real time

PCR techniques. One might doubt the nonlinearity is only

from overfitting in learning of neural networks. But the

results on independent validation data showed that this is

not the case. Typically, individual studies have only a

limited range of gene expression under strictly controlled

biological conditions, and their data are restricted in small

ranges. Therefore linear approximation would be good

enough, and thus pair-wise linear relationships within

various pathways are often examined. When we integrate

data from various cases and laboratories, the nonlinearity

would appear. In addition, lack of suitable data prepro-

cessing methods and large variability in cross-

experimental, cross-laboratory, and cross-platform studies

of gene expression data, often led to incomplete and even
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corresponding predictions by neural network model and the two

linear models. The right most 4 samples in the PCR data region were

sample of GSNO–SRS treated mouse thymocytes; b Boxplot of

prediction errors (= predicted value-experiment measured value) of

three models
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contradictory interpretations of the gene expression data.

Nonlinearities may only be detected through a large

domain of gene expressions that cover different studies. It

thus can be concluded that pair-wise gene interaction

studies through correlation coefficients are only adequate

locally in a small range of gene expressions. A rather

sophisticated network model is needed to study the intri-

cate and delicate relationships among genes for a thorough

understanding of the p53 pathway and apoptosis. More-

over, the agreement of our predicted gene expression level

with the microarray experimental data also indicates that

employment of nonlinear models seems to be not just

plausible but necessary.

It is worthwhile to note that the reliability of microarray

technology is still in debate [30]. Major concerns were

raised with inconsistent conclusions drawn from cross-

platform experiments [15]. In fact, such inconsistency may

not be solely due to the technology itself but is in part due

to the normalization methods and analysis algorithms

employed. Large variability may still exist and may lead to

reliability concerns after the standard normalization

methods. For example, the Pearson correlation coefficients

between bax and p53 vary largely across these 4 data sets

(0.698 in TS, 0.349 in TN, 0.741 in IA, and 0.471 in NU).

However, after applying our normalization method of

taking the ratios of each gene to beta-actin, the Pearson

correlation coefficients lie at a comparable level: 0.775,

0.509, 0.747, and 0.503, respectively.

Furthermore, it is noted that different probes of the same

target sequences (genes) with the same copy numbers may

yield different intensities, because the binding affinities of

probes in microarray are non-negligibly different and

depend on probe sequences [31]. Although the relative

expression levels have been used for genes (p53, ING1 and

bax) in microarray data, they still differ from our normal-

ized real time PCR data by a gene-specific baseline. Thus, a

cross-platform normalization procedure is required to

achieve the consistency between microarray gene expres-

sion data and the real time PCR gene expression data.

Although correlation has been used to integrate cross-

platform microarray data [32], it was not suitable to our

analysis here for quantitative study. We thus propose a

method to eliminate cross-platform differences, a cross-

platform normalization procedure, see ‘‘Materials and

methods’’. This cross-platform normalization method

yielded remarkable consistency of the predicted bax level

by the neural network response surface model using both

real time PCR and microarray experimental data. This

indicates that gene expression levels from different plat-

forms can be consistent if they are properly preprocessed

with reference genes. Our results exemplify the feasibility

of integrating cross-laboratory, cross-experimental and

cross-platform gene expression data.

In summary, we exemplified an integrated approach to

study nonlinear relationships of 3 genes in p53-dependent

networks. We indicate that for complex interdependent

regulatory networks, pair-wise gene interaction studies

through correlation coefficients are often only adequate

locally in a small range of gene expressions. A rather

sophisticated network model is needed to study the intri-

cate and delicate relationship among genes for a thorough

understanding of the gene regulatory networks. Our results

also demonstrate that gene expression levels from different

platforms, such as real time PCR and microarrays, can be

consistent if they are properly preprocessed with appro-

priate reference genes.

Acknowledgments This work is supported by the National Natural

Science Foundation of China (No. 30570425, No. 10721403, No.

39770202), the National High Technology Research and Develop-

ment of China (No. 2006AA02Z331, No. 2008AA02Z306), the

National Key Basic Research Project of China (No. 2003CB715903,

No. 2006CB911001), and the Scientific Research Foundation for the

Returned Overseas Chinese Scholars, State Education Ministry. This

work was completed during the visiting of authors (LW and MQ) to

Michigan State University. We also acknowledge Lizhen Gu for

providing Sinapine, and Xiaoyou Su, Ruihua Liu, Shuang Cao and

Lijin Shi for technical assistance.

References

1. Bogdan C (2001) Nitric oxide and the immune response. Nat

Immunol 2:907–916. doi:10.1038/ni1001-907

2. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network.

Nature 408:307–310. doi:10.1038/35042675

3. Xu Y (2003) Regulation of p53 responses by post-translational

modifications. Cell Death Differ 10:400–403. doi:10.1038/sj.

cdd.4401182

4. Chipuk JE, Green DR (2004) Cytoplasmic p53: bax and forward.

Cell Cycle 3:429–431

5. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct

transcriptional activator of the human bax gene. Cell 80:293–299.

doi:10.1016/0092-8674(95)90513-8

6. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax

suppresses tumorigenesis and stimulates apoptosis in vivo. Nature

385:637–640. doi:10.1038/385637a0

7. Garkavtsev I, Kazarov A, Gudkov A, Riabowol K (1996) Sup-

pression of the novel growth inhibitor p33ING1 promotes

neoplastic transformation. Nat Genet 14:415–420. doi:10.1038/

ng1296-415

8. Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I

(1997) A novel candidate tumor suppressor, ING1, is involved in

the regulation of apoptosis. Cancer Res 57:1255–1258

9. Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV,

Chumakov PM, Gudkov AV (1998) The candidate tumour sup-

pressor p33ING1 cooperates with p53 in cell growth control.

Nature 391:295–298. doi:10.1038/34675

10. Gonzalez L, Freije JM, Cal S, Lopez-Otin C, Serrano M, Palmero

I (2006) A functional link between the tumour suppressors ARF

and p33ING1. Oncogene 25:5173–5179

11. Cheung KJ Jr, Li G (2002) p33(ING1) enhances UVB-induced

apoptosis in melanoma cells. Exp Cell Res 279:291–298. doi:

10.1006/excr.2002.5610

244 Apoptosis (2009) 14:236–245

123

http://dx.doi.org/10.1038/ni1001-907
http://dx.doi.org/10.1038/35042675
http://dx.doi.org/10.1038/sj.cdd.4401182
http://dx.doi.org/10.1038/sj.cdd.4401182
http://dx.doi.org/10.1016/0092-8674(95)90513-8
http://dx.doi.org/10.1038/385637a0
http://dx.doi.org/10.1038/ng1296-415
http://dx.doi.org/10.1038/ng1296-415
http://dx.doi.org/10.1038/34675
http://dx.doi.org/10.1006/excr.2002.5610


12. Zhu JJ, Li FB, Zhou JM, Liu ZC, Zhu XF, Liao WM (2005) The

tumor suppressor p33ING1b enhances taxol-induced apoptosis by

p53-dependent pathway in human osteosarcoma U2OS cells.

Cancer Biol Ther 4:39–47. doi:10.1158/1535-7163.MCT-04-

0330

13. Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what

questions remain to be explored? Cell Death Differ 13:1027–

1036. doi:10.1038/sj.cdd.4401910

14. Barczak A, Rodriguez MW, Hanspers K et al (2003) Spotted long

oligonucleotide arrays for human gene expression analysis.

Genome Res 13:1775–1785. doi:10.1101/gr.1048803

15. Tan PK, Downey TJ, Spitznagel EL Jr et al (2003) Evaluation of

gene expression measurements from commercial microarray

platforms. Nucleic Acids Res 31:5676–5684. doi:10.1093/nar/

gkg763

16. Yamagata T, Mathis D, Benoist C (2004) Self-reactivity in thy-

mic double-positive cells commits cells to a CD8 alpha alpha

lineage with characteristics of innate immune cells. Nat Immunol

5:597–605. doi:10.1038/ni1070

17. Zucchelli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D

(2005) Defective central tolerance induction in NOD mice:

genomics and genetics. Immunity 22:385–396. doi:10.1016/

j.immuni.2005.01.015

18. Yamagata T, Benoist C, Mathis D (2006) A shared gene-

expression signature in innate-like lymphocytes. Immunol Rev

210:52–66. doi:10.1111/j.0105-2896.2006.00371.x

19. Johnson EN, Appelbaum ER, Carpenter DC et al (2004) Neu-

romedin U elicits cytokine release in murine Th2-type T cell

clone D10.G4.1. J Immunol 173:7230–7238

20. Speed TP (2003) Statistical analysis of gene expression micro-

array data. Chapman & Hall/CRC, Boca Raton

21. Tsodikov A, Szabo A, Jones D (2002) Adjustments and measures

of differential expression for microarray data. Bioinformatics

18:251–260. doi:10.1093/bioinformatics/18.2.251

22. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A com-

parison of normalization methods for high density oligonucleotide

array data based on variance and bias. Bioinformatics 19:185–193.

doi:10.1093/bioinformatics/19.2.185

23. Lin DY, Ma WY, Duan SJ, Zhang Y, Du LY (2006) Real-time

imaging of viable-apoptotic switch in GSNO-induced mouse

thymocyte apoptosis. Apoptosis 11:1289–1298. doi:10.1007/

s10495-006-7804-1

24. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C

(1991) A rapid and simple method for measuring thymocyte

apoptosis by propidium iodide staining and flow cytometry. J

Immunol Methods 139:271–279. doi:10.1016/0022-1759(91)

90198-O

25. van‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene

expression profiling predicts clinical outcome of breast cancer.

Nature 415:530–536. doi:10.1038/415530a

26. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA,

Yaffe MB (2005) A systems model of signaling identifies a

molecular basis set for cytokine-induced apoptosis. Science

310:1646–1653. doi:10.1126/science.1116598

27. Tzagoloff A (1963) Metabolism of sinapine in mustard plants I.

Degradation of sinapine into sinapic acid & choline. Plant Physiol

38:202–206

28. Weier D, Mittasch J, Strack D, Milkowski C (2008) The genes

BnSCT1 and BnSCT2 from Brassica napus encoding the final

enzyme of sinapine biosynthesis: molecular characterization

and suppression. Planta 227:375–385. doi:10.1007/s00425-007-

0624-x

29. Yoon BH, Jung JW, Lee JJ et al (2007) Anxiolytic-like effects of

sinapic acid in mice. Life Sci 81:234–240. doi:10.1016/j.lfs.

2007.05.007

30. Eisenstein M (2006) Microarrays: quality control. Nature

442:1067–1070. doi:10.1038/4421067a

31. Zhang L, Miles MF, Aldape KD (2003) A model of molecular

interactions on short oligonucleotide microarrays. Nat Biotechnol

21:818–821. doi:10.1038/nbt836

32. Zhou XJ, Kao MC, Huang H et al (2005) Functional annotation

and network reconstruction through cross-platform integration of

microarray data. Nat Biotechnol 23:238–243. doi:10.1038/

nbt1058

Apoptosis (2009) 14:236–245 245

123

http://dx.doi.org/10.1158/1535-7163.MCT-04-0330
http://dx.doi.org/10.1158/1535-7163.MCT-04-0330
http://dx.doi.org/10.1038/sj.cdd.4401910
http://dx.doi.org/10.1101/gr.1048803
http://dx.doi.org/10.1093/nar/gkg763
http://dx.doi.org/10.1093/nar/gkg763
http://dx.doi.org/10.1038/ni1070
http://dx.doi.org/10.1016/j.immuni.2005.01.015
http://dx.doi.org/10.1016/j.immuni.2005.01.015
http://dx.doi.org/10.1111/j.0105-2896.2006.00371.x
http://dx.doi.org/10.1093/bioinformatics/18.2.251
http://dx.doi.org/10.1093/bioinformatics/19.2.185
http://dx.doi.org/10.1007/s10495-006-7804-1
http://dx.doi.org/10.1007/s10495-006-7804-1
http://dx.doi.org/10.1016/0022-1759(91)90198-O
http://dx.doi.org/10.1016/0022-1759(91)90198-O
http://dx.doi.org/10.1038/415530a
http://dx.doi.org/10.1126/science.1116598
http://dx.doi.org/10.1007/s00425-007-0624-x
http://dx.doi.org/10.1007/s00425-007-0624-x
http://dx.doi.org/10.1016/j.lfs.2007.05.007
http://dx.doi.org/10.1016/j.lfs.2007.05.007
http://dx.doi.org/10.1038/4421067a
http://dx.doi.org/10.1038/nbt836
http://dx.doi.org/10.1038/nbt1058
http://dx.doi.org/10.1038/nbt1058

	Nonlinear cooperation of p53-ING1-induced bax expression �and protein S-nitrosylation in GSNO-induced thymocyte apoptosis: a quantitative approach with cross-platform validation
	Abstract
	Introduction
	Materials and methods
	Experiments
	Data
	Pre-processing and normalization of real time PCR data
	Pre-processing and normalization of microarray data
	Statistical analysis

	Results
	Inducing thymocyte apoptosis by GSNO and Dexamethasone (Dex)
	Production of protein S-nirosylation in thymocyte
	A novel algorithm for normalizing the raw real time PCR data
	p53 and ING1 may cooperate to regulate bax expression
	Nonlinear network model for p53 and ING1 regulating bax
	Validations by cross-platform and cross-experimental data

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


