BOLD fMRI using a modified HASTE sequence

Yongquan Ye a,b, Yan Zhuo a,b,*, Rong Xue a,b, Xiaohong Joe Zhou c,d,e,f,*

a State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, and Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
b Beijing MRI Center for Brain Research, Beijing, People's Republic of China
c Department of Radiology, University of Illinois Medical Center, Chicago, Illinois, USA
d Department of Neurosurgery, University of Illinois Medical Center, Chicago, Illinois, USA
e Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
f Center for MR Research, University of Illinois Medical Center, Chicago, Illinois, USA

A R T I C L E I N F O

Article history:
Received 13 April 2009
Revised 16 July 2009
Accepted 17 July 2009
Available online 28 July 2009

Keywords:
BOLD
Functional MRI
Turbo spin echo
GRAPPA
Neuronal localization

A B S T R A C T

For more than a decade, turbo spin echo (TSE) pulse sequences have been suggested as an alternative to echo planar imaging (EPI) sequences for fMRI studies. Recent development in parallel imaging has renewed the interest in developing more robust TSE sequences for fMRI. In this study, a modified half Fourier acquisition single-shot TSE (mHASTE) sequence has been developed with a three-fold GRAPPA to improve temporal resolution as well as a preparation time to enhance BOLD sensitivity. Using a classical flashing checkerboard block design, the BOLD signal characteristics of this novel method have been systematically analyzed as a function of several sequence parameters and compared to those of gradient-echo and spin-echo EPI sequences. Experimental studies on visual cortex of five volunteers have provided evidence suggesting that mHASTE can be more sensitive to extra-vascular BOLD effects around microvascular networks, which leads to more accurate function localization. The studies also show that the activation cluster size in mHASTE increases with the refocusing RF flip angle and TE while decreasing with the echo number (ncenter) used to sample the k-space center. Compared to spin-echo EPI, mHASTE incurs an ~50% reduction in activation cluster size and an ~20% decrease in BOLD contrast. However a higher signal-to-noise ratio and a spatially more uniform temporal stability have been observed in mHASTE as compared to the EPI sequences when the scan times are held constant. With further refinement and optimization, mHASTE can become a viable alternative for fMRI in situations where the conventional EPI sequences are limited or prohibitive.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Since the introduction of blood oxygen level dependent (BOLD) contrast in early 1990’s (Kwong et al., 1992; Ogawa and Lee, 1990; Ogawa et al., 1993), functional MRI (fMRI) based on BOLD (Kwong et al., 1992; Ogawa et al., 1992) has been widely used in research and clinical applications. BOLD contrast relies on regional magnetic susceptibility changes resulting from variations in deoxyhemoglobin concentration related to brain activities. Such changes occur in both brain parenchyma (e.g., the gray matter) and blood, making fMRI signals sensitive to not only neuronal activation but also to hemodynamic modulations (e.g., blood flow) (Ogawa and Lee, 1990; Ogawa et al., 1993).

Gradient-echo planar imaging (GE-EPI) is the most commonly used technique for BOLD fMRI due to its high data acquisition efficiency, high sensitivity to T2* effects, and low specific absorption rate (SAR) at high magnetic fields (e.g., ≥ 3 T). However, as GE-EPI signal is also sensitive to T2* changes in and around draining veins (Boxerman et al., 1995; Duyn et al., 1994; Kim et al., 1994; Lai et al., 1993; Lee et al., 1995; Menon, 2002; Segebarth et al., 1994; Ugurbil et al., 2000), a mismatch between the observed BOLD signals and the actual neuronal activities can occur, which compromises function localization. To address this problem, EPI based on spin echoes (SE) featuring a mixture of T2 and T2* contrast has been employed by a number of groups (Bandettini et al., 1994; Jones et al., 1998; Lowe et al., 2000; Norris et al., 2002; Oja et al., 1999; Parkes et al., 2005; Thulborn et al., 1997; van Zijl et al., 1998). The benefits of SE-EPI in function localization can be further enhanced at high fields (e.g., ≥ 3 T) where extra-vascular (EV) BOLD effects (mainly through diffusion-facilitated dynamic averaging) become more dominant (Duong et al., 2002; Ugurbil et al., 2003; Yacoub et al., 2003, 2005; Zhao et al., 2004). With a refocusing pulse, SE-EPI refocuses the intravascular (IV) static dephasing effects (especially those in large veins), leading to BOLD signals weighted more towards the microvasculature networks which correlate more closely with neuronal activities. Although the overall BOLD contrast is reduced in SE-EPI, the functional specificity can be greatly improved. Additionally, the dephasing effects caused by both
main magnetic field inhomogeneities and magnetic susceptibility variations are also reduced, alleviating problems with signal voids and image distortions commonly seen in GE-EPI.

The benefits of SE-EPI can in principle be further enhanced by employing multiple RF refocusing pulses. For more than a decade, several groups have devoted considerable efforts to developing and demonstrating turbo spin echo (TSE) methods for fMRI. Constable et al. (1994) and Gao et al. (1995) both showed that fully sampled multi-shot TSE was capable of performing BOLD fMRI with high in-plane resolution at 1.5 T or 1.9 T. By introducing an extra time interval to incorporate T_2^* weighting into the TSE signal, BOLD signal detection with U-FLARE (i.e., a single-shot TSE sequence) has been demonstrated (Niendorf, 1999; Norris et al., 1993) and analyzed in a recent paper (Norris, 2007). With a bolus injection, Koshimoto et al. showed that half Fourier acquisition single-shot TSE (HASTE) may even outperform gradient-echo methods in absolute quantifications of capillary blood volume and flow (Koshimoto et al., 1999). Recently, HASTE was combined with SENSE (Pruessmann et al., 1999) to obtain temporal resolution and BOLD sensitivity very close to those of SE-EPI (Poser and Norris, 2007a, b).

These promising results of TSE-based fMRI methods have motivated us to further develop a TSE method to take advantage of the specificity in functional localization with improved BOLD sensitivity while maintaining an adequate temporal resolution by using an optimized parallel imaging technique. To optimize the sensitivity to BOLD contrast, the signal characteristics of TSE as a function of a number of important acquisition parameters must be fully understood. Therefore, the purpose of this study is two-fold. First, we will develop a single-shot TSE sequence in conjunction with GRAPPA (Griswold et al., 2002) in order to achieve a temporal resolution comparable to EPI sequences for BOLD fMRI. Second, we will systematically analyze the signal characteristics of the new sequence, and compare the performance of this sequence with SE- and GE-EPI under identical conditions.

Methods

Pulse sequences

A single-shot TSE sequence was developed and implemented to achieve high data acquisition speed while maintaining an acceptable SAR level. The sequence, which will be referred to as modified HASTE (mHASTE), was based on a commercial HASTE sequence (Siemens Medical Solutions, Erlangen, Germany). As shown in Fig. 1, a major feature of mHASTE was the inclusion of a preparation time (T_p) between the excitation RF pulse and the echo train in order to accentuate the EV dynamic averaging effects (Poser and Norris, 2007a). T_p can be set to any value longer than one echo spacing (ESP). In this study, we used an upper limit of 80 ms for T_p because of the following considerations. Firstly, it typically required 8 slices to cover the visual cortex of the subjects. With a TR of 2000 ms, the total sequence length was 250 ms accordingly. This imposed an upper limit of ~80 ms for T_p. Secondly, a T_p of 80 ms corresponded to a TE of ~112 ms (see the next paragraph on the relationship between T_p and TE), which was sufficiently long for studying T_2^* contrast in BOLD. In the sequence, the first echo was refocused at T_p by a 2.56 ms three-lobe SINC pulse (i.e., θ_1), whose flip angle was fixed at 180° to maximize the transverse magnetization. All subsequent refocusing pulses (i.e., θ_2) were 2 ms single-lobe SINC pulses producing an echo train for phase encoding. The θ_2 pulses had the same flip angle between 90° and 180°, except for the flip angle of the first pulse which was set to 90° + $\theta_2/2$ for signal intensity and stability considerations (Hennig and Scheffler, 2000). For simplicity, this first pulse in the echo train is also referred to as θ_2 throughout this paper.

GRAPPA (Griswold et al., 2002) employed with three-fold acceleration and separately collected reference scans, reducing the echo train length (ETL) to as few as 12 to 18 for an image with a 64 × 64 matrix size. We employed a k-space sampling scheme that was identical to that of a conventional HASTE sequence, starting on the partially acquired side and going towards the other end monotonically. The TE of the mHASTE sequence was defined as the interval between the excitation and the acquisition of k-space center line, and determined by T_p and the echo number of the k-space center line acquisition (i.e., n_{center} in Fig. 1): $TE = T_p + ESP \times n_{center}$. The echo spacing was fixed at 6.5 ms with a bandwidth of 320 Hz/pixel throughout this study. Different values of θ_2, TE and n_{center} were experimented to study their influence on BOLD signal characteristics, as detailed in the following sections.

For comparison, both fully sampled GE- and SE-EPI data were also acquired with scanning parameters chosen closely to those used in mHASTE, except for a smaller excitation flip angle (i.e. 70°; the Ernst angle) in GE-EPI and different TE's (30 ms in GE-EPI and 80 ms in SE-EPI). The bandwidth for both EPI sequences was 2442 Hz/pixel. For all three sequences, the images acquired during the first two TRs were discarded as dummy scans in order to achieve equilibrium. Performing dummy scans was particularly important for mHASTE, as unstable magnetization was observed to result in large signal variations in images acquired during the first two TRs.

Subjects and stimulus

A total of 5 healthy volunteers (two males and three females; 24–28 years old; mean age = 25.6 years) with written consent participated in this study under a protocol approved by the Institutional Review Board. All subjects had normal or corrected-to-normal vision. Four of the subjects participated in more than one experiments described below. During scanning, the subject’s head was fixed in the coil with soft padding to minimize motion. Visual stimuli used in fMRI consisted of three blocks of 20 s/20 s rest/active flickering black and white checkerboard. Each session lasted 140 s (ended with an extra 20 s rest). The total scan time varied with different experimental designs, but all within 50 min.

Data acquisition and analysis

All experimental studies were conducted on a Siemens Trio TIM 3 T MRI scanner (Siemens Medical Solutions, Erlangen, Germany) with a commercial 12-channel phased-array head coil. The key scanning parameters for all sequences that were held constant throughout this study were: FOV = 220 × 220 mm², voxel size = 3.4 × 3.4 × 5 mm³, slice thickness/gap = 5/2.5 mm, TR = 2 s. Eight transverse slices containing the calcarine fissure were selected. These slices were sufficient to cover the whole visual cortex in all subjects of the study.
With this setup, three experimental studies were performed as detailed below.

(i) Stimulus-induced functional activation

fMRI data were obtained from 5 volunteers using mHASTE, SE- and GE-EPI sequences, with the visual stimulation described above. For mHASTE, TE was fixed at 50 ms and θ2 was at 180°. All data were then processed using SPM5 (Wellcome Department of Cognitive Neurology, London, UK) and in-house Matlab (Mathworks, Natick, MA, USA) programs. Functional images were spatially normalized to an ICBM-defined T1 standard space, followed by analysis of activation cluster size, maximal and average r-values, and BOLD contrast (note that BOLD contrast is defined as average ΔS/S throughout this paper). A statistical threshold of p<0.05 was used with family-wise error (FWE) control for all data. The functional signal time course and the signal changes (ΔS/S) were then extracted from all voxels within the activation cluster. In addition, the histogram of ΔS/S and the scatter plot of ΔS/S versus normalized signal |S| were produced to visualize the activation distribution.

(ii) Influence of θ2, TE, and ncenter on mHASTE fMRI

In order to investigate the BOLD signal characteristics in mHASTE, we conducted a series of fMRI experiments by systematically varying θ2, TE, and ncenter. To study BOLD contrast as a function of θ2, TE was held constant (50 ms) while θ2 was varied from 90° to 180° with an increment of 10°. To determine the TE dependence of mHASTE signals for functional imaging, θ2 was fixed at 180° while TE was varied from 10 to 80 ms with a 10 ms interval, corresponding to a TE ranging from 42 to 112 ms (with the same increment). In both experiments, ncenter was set to 5, resulting in TE = Tp + ESP × 5 = Tp + 32 ms.

The last experiment in this series was designed to investigate the impact of ncenter on BOLD contrast. With the monotonically descending k-space sampling, varying ncenter alters the number of the over-scans, which in turn affects TE and ETL. On the other hand, in order to investigate the relationship between ncenter and BOLD sensitivity, TE must remain constant so as not to introduce confounding effect arising from T1 decay. Therefore, we adjusted Tp concurrently with ncenter (i.e., from 2 to 8) to give a virtually constant TE of ~76 ms, as dictated by TE = Tp + ESP × ncenter. The combinations of TE, Tp, and ncenter used in this experiment (where θ2 was set to 180°) are listed in Table 1.

Each of the above three experiments lasted about 40 min. The number of volunteers for each experiment was 5, 5 and 4, respectively. During experiments, the order of data acquisitions with different θ2, TE or ncenter was randomized to minimize any time-dependent effects caused by signal drifting or subject fatigue. Functional data were processed using the same methods described above.

(iii) Noise and signal temporal stability of mHASTE

To investigate the spatial noise behavior and signal temporal stability in fMRI using mHASTE and to compare the performance with SE- and GE-EPI, we acquired a time series of resting state images from one volunteer. One hundred time points (corresponding to a scan time of 3 min and 20 s) were acquired with each of the three sequences using the same functional protocols described earlier. In order to calculate the signal-to-noise ratio (SNR), a region of interest (ROI) was selected from a background region free of artifacts. The standard deviation (σn) of the background ROI was then used to calculate the SNR (i.e., SNR = S / σn) for all voxels within the subject. With the use of parallel imaging, the noise in the background can be spatially dependent. To address this problem, multiple ROIs were randomly selected from the background for the SNR calculation. The SNR varied within only 2%. To analyze the signal temporal stability, both signal temporal variation (i.e., tSNR = STD(ΔS(t))/ΔS) and temporal SNR (i.e., tSNR = S(t)/σn, where S(t) is the average signal of all 100 time points) were calculated voxel-by-voxel. Finally, the distributions of tSNR and tSNR in percentage voxel number were plotted as histograms. To further evaluate the possible influence of stimulated echoes and multiple coherence pathways on the spatiotemporal SNR behaviors, we varied θ2 from 90° to 180° and repeated the spatiotemporal SNR study. Experiments were carried out on the same volunteer, and the same noise and temporal stability analyses described above were applied.

Results

Stimulus-induced functional activations

Fig. 2 shows a set of images with activation clusters superimposed on the source images obtained from a representative subject using the mHASTE, SE-EPI and GE-EPI sequences, respectively. For direct comparison, the images and activation clusters in Fig. 2 were not normalized to the ICBM T1 standard space. The subject-averaged (n = 5) cluster size, maximum and average t-values, and BOLD contrast (all ICBM T1 space normalized) are summarized in Table 2, all obtained with p<0.05 (FWE corrected). As expected, the mHASTE source image in Fig. 2 illustrated excellent image quality with no signal voids or image distortion caused by susceptibility variations near the nasal cavity and the temple bone. GE-EPI produced the most pronounced activation among the three, as shown by the largest cluster size and the highest t-values in Table 2. However, some active voxels extended to areas outside the visual cortex (Fig. 2), suggesting inaccuracy in functional localization. SE-EPI yielded less activation with the active voxels concentrated predominantly in the visual cortex. The activation cluster size obtained with mHASTE was further decreased by ~50% as compared to SE-EPI, while the BOLD contrast decreased by ~20%. It is important to note that the difference in average t-values between mHASTE and SE-EPI was significant (paired t-test, p<0.015), and this result is different from that reported in a previous study using a similar method (Poser and Norris, 2007a).

Table 2

<table>
<thead>
<tr>
<th>mHASTE</th>
<th>SE-EPI</th>
<th>GE-EPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster size</td>
<td>2025±610</td>
<td>4056±950</td>
</tr>
<tr>
<td>Max t-value</td>
<td>12.5±0.6</td>
<td>16.2±0.7</td>
</tr>
<tr>
<td>Ave t-value</td>
<td>6.8±0.2</td>
<td>8.3±0.2</td>
</tr>
<tr>
<td>Contrast (average ΔS/S: %)</td>
<td>1.10±0.08</td>
<td>1.38±0.10</td>
</tr>
</tbody>
</table>

All data are shown as mean value±SEM.
The subject-averaged, normalized signal time courses were very similar between mHASTE and SE-EPI (Fig. 3), suggesting similar BOLD mechanisms in both sequences. However, the signal change in SE-EPI (1.38 ± 0.10 %) was higher than that in mHASTE (1.10 ± 0.08 %; Table 2), indicating either reduced BOLD sensitivity or fewer contrast sources in mHASTE. Fig. 4 shows (a) the distribution of $\Delta S/S$ as a histogram in percentage voxel number and (b) the scatter plot of $\Delta S/S$ versus normalized signal intensity $||S||$, both calculated from all active voxels of all 5 subjects (summed instead of averaged). The active voxels in mHASTE exhibited the narrowest distribution of $\Delta S/S$ with the largest value at $\sim 2\%$ (Fig. 4a, blue line). In comparison, the SE- and GE-EPI active voxels had much broader (also less symmetric) distribution of $\Delta S/S$ (Fig. 4a, green and red lines, respectively). The maximal $\Delta S/S$ was $\sim 4\%$ in SE-EPI, and extended to greater than 10% in GE-EPI (note the elevated tail in the histogram of Fig. 4a, and the upper part of the scatter plot in Fig. 4b for GE-EPI). It is also interesting to note that $\Delta S/S$ in mHASTE was essentially independent of $||S||$ (fitted curve slope $= 0.19$), while trends of negative correlation were observed in both GE-EPI (slope $= -2.74$) and SE-EPI (slope $= -0.90$) data, as shown in Fig. 4b.

Dependence of mHASTE fMRI signals on θ_2, TE and n_{center}

Fig. 5 displays a set of plots showing the subject-averaged normalized cluster size, average t-value and BOLD contrast (i.e., average $\Delta S/S$) as a function of θ_2, TE and n_{center}. It can be seen that the BOLD contrast was essentially constant when θ_2 varied from 90° to 180°, while the cluster size increased with θ_2 (Figs. 5a and b). This suggests that the contrast source of mHASTE was independent of the refocusing flip angle but the functional sensitivity was not. The dependence of mHASTE BOLD signals on TE is shown in Figs. 5c and d, where a significant increase in cluster size and a linear increase in BOLD contrast were observed as TE became longer. A linear regression between BOLD contrast and TE yielded a slope of 0.0124%/ms, with an intercept of 0.0314% at TE $= 0$ (Fig. 5d). Figs. 5e and f show the dependence of the BOLD signals on n_{center} (ranging from 2 to 8) at a virtually constant TE (76 ± 1 ms; see Table 1). The cluster size decreased drastically with n_{center} ($\sim 10\%$ for each extra pulse), while the BOLD contrast showed only a slight decrease ($\sim 0.03\%$ for each extra pulse).

In all the results reported above, the average t-values were very high, suggesting the activations detected by mHASTE were significant.

Noise and temporal variation

Fig. 6 shows a set of color-coded SNR maps, temporal noise variance $\sigma_{\text{SNR}}(t)$ maps, and tSNR maps acquired from a representative subject using each of the three sequences. All images were acquired at the same slice location with the subject in resting state. Each row of images has the same intensity scale, as quantitatively indicated by the scale bar on the right. In the first row where the receiver gains were set the same for all the three images, it can be seen that mHASTE resulted in a much higher SNR in brain parenchyma than either of the EPI sequences (σ_{SNR} in mHASTE, GE-EPI and SE-EPI was 1.12, 7.34 and 6.36, respectively). In the second row, the highest σ_{SNR} in mHASTE was found mostly in the cerebrospinal fluid (CSF). Without considering the CSF region, the σ_{SNR} map in the brain parenchyma was more homogeneous in mHASTE than in GE- or SE-EPI. In the third row, the tSNR map of mHASTE continued exhibiting better homogeneity than those of GE- and SE-EPI, although the tSNR maps of the EPI sequences had higher values in most regions of the brain. In the occipital lobe, however, similar tSNR values were observed between mHASTE and SE-EPI.

Fig. 3. Subject-averaged ($n = 5$) normalized time course of mHASTE and SE-EPI in response to the visual stimulation described in the text. The time course was first calculated using all active voxels and then averaged across subjects, with error bars showing the inter-subject variation. The gray background indicates the interval of the stimulation. The time course of mHASTE signal was highly correlated to that of SE-EPI.

Fig. 4. (a) The $\Delta S/S$ histograms (in percentage voxel number) in mHASTE (blue), GE-EPI (red) and SE-EPI (green). The percentage voxel number was calculated by dividing the voxel number at each $\Delta S/S$ value by the total active voxel number (i.e., the sum of all active voxels of the same 5 subjects in Table 2); (b) Scatter plots of $\Delta S/S$ versus normalized signal intensity $||S||$ of all active voxels from the 5 subjects. $\Delta S/S$ was independent of $||S||$ in mHASTE (the slope of the fitted dash line was 0.19), while negative correlation was found in GE-EPI (solid line, slope $= -2.74$) and SE-EPI (dotted line, slope $= -0.90$).

Fig. 6. A set of color-coded SNR maps, temporal noise variance $\sigma_{\text{SNR}}(t)$ maps, and tSNR maps acquired from a representative subject using each of the three sequences. All images were acquired at the same slice location with the subject in resting state. Each row of images has the same intensity scale, as quantitatively indicated by the scale bar on the right. In the first row where the receiver gains were set the same for all the three images, it can be seen that mHASTE resulted in a much higher SNR in brain parenchyma than either of the EPI sequences (σ_{SNR} in mHASTE, GE-EPI and SE-EPI was 1.12, 7.34 and 6.36, respectively). In the second row, the highest σ_{SNR} in mHASTE was found mostly in the cerebrospinal fluid (CSF). Without considering the CSF region, the σ_{SNR} map in the brain parenchyma was more homogeneous in mHASTE than in GE- or SE-EPI. In the third row, the tSNR map of mHASTE continued exhibiting better homogeneity than those of GE- and SE-EPI, although the tSNR maps of the EPI sequences had higher values in most regions of the brain. In the occipital lobe, however, similar tSNR values were observed between mHASTE and SE-EPI.
The data in Fig. 6 were further analyzed using histograms to show the distributions of $\sigma_S(t)$ and tSNR (Fig. 7). The $\sigma_S(t)$ distributions (Fig. 7a) were similar for both GE- and SE-EPI, and not distinguishable between the background and brain voxels. In contrast, $\sigma_S(t)$ in mHASTE showed a distinctive distribution with the background voxels at the lower values (the sharp peak) while the brain voxels at higher values (i.e., $\sigma_S(t)$ of 3–6). This distinction is consistent with the $\sigma_S(t)$ range in the brain parenchyma shown in Fig. 6. In Fig. 7b, the tSNR distribution of background voxels showed a lower mean value in mHASTE than in either EPI sequence. In Fig. 7c, the tSNR distributions of brain voxels of mHASTE and SE-EPI showed similar shapes, although shifted relative to each other. For each of the two
distributions, a peak was observed at 45 and 75, respectively. In the brain parenchyma, the tSNR distribution of GE-EPI was flat and span a very broad range (Fig. 7c), which reflected the large degree of heterogeneity among different tissues seen in Fig. 6.

Fig. 8 summarizes the results from the experiment in which θ_2 was varied to evaluate the spatiotemporal stability under resting state. The histograms of $\sigma_{S(t)}$, tSNR of background voxels, and tSNR of the brain voxels are shown in a format analogous to that in Fig. 7. Each graph contains 10 distribution curves, each corresponding to a specific θ_2 value ranging from 90° to 180°. The distributions shown in all three figures (Figs. 8a–c) were essentially independent of θ_2.

Discussion

In this study, we have modified a single-shot TSE sequence for BOLD fMRI. The modified sequence (i.e., mHASTE) included a preparation time T_p to enhance BOLD sensitivity and GRAPPA with three-fold acceleration to improve temporal resolution. With a classical flashing checkerboard block design, we have systematically analyzed the BOLD signal characteristics of this novel method as a function of several sequence parameters and compared the visual cortex activation to that obtained from GE- and SE-EPI sequences. Significant activation was observed using mHASTE, but the activation characteristics (cluster size, t-values, and BOLD contrast) were notably different from those of the EPI methods. Furthermore, mHASTE BOLD signals were found to be sensitive to several sequence parameters (i.e., θ_2, TE and n_{center}), providing valuable insights into further development and optimization. Lastly, the experimental study on noise and signal spatiotemporal behaviors revealed a higher SNR and more uniform tSNR in mHASTE than in the two EPI sequences. For mHASTE, the tSNR performance was also observed to be virtually independent of the refocusing RF flip angle in human subjects.

Fig. 6. Maps of the SNR (top row), signal temporal variation $\sigma_{S(t)}$ (middle row) and tSNR (bottom row) of resting state images acquired with GE-EPI, SE-EPI and mHASTE (for each column), respectively. No spatial processing was performed prior to the calculation of these maps and motion was negligible (i.e., <0.5 mm displacement and <1° rotation as determined with SPM5). Intensity display range is the same for each row, as shown by the color scale bar on the right.

Fig. 7. Histograms of (a) $\sigma_{S(t)}$ of all imaging voxels, (b) tSNR of background voxels, and (c) tSNR of in-object voxels from data of a volunteer at resting state. Voxel number is represented as percentage relative to the total voxel number of all slices. The tSNR histograms for background voxels and brain voxels are separated with a threshold at tSNR = 5, and displayed separately for better visualization. Each color represents the results for an individual sequence (mHASTE: blue; GE-EPI: red; and SE-EPI: green). The elevated tails in (a) represent the total percentage of voxels with $\sigma_{S(t)}$ greater than 30, i.e. mainly those ‘hot’ voxels in Fig. 6.
Comparison of stimulus-induced signal changes

Using scanning parameters similar to those in Poser and Norris (2007a), mHASTE has shown significant activation on the visual cortex with average t-value as high as 6.8±0.2 for all subjects (Table 2). The results showed substantially higher statistical significance as compared to other published fMRI studies on visual cortex employing TSE sequences (Constable et al., 1994; Niendorf, 1999; Norris, 2007; Norris et al., 1993; Poser and Norris, 2007a). The confidence level (p<0.05; FWE corrected) used in our study, which was equivalent to uncorrected p<10^{-14} – 10^{-7}, was considerably more stringent than the commonly used confidence level of uncorrected p<0.001 (Friston, 2007). With the confidence level we employed, false positives can be effectively rejected and reliability improved. Compared to SE-EPI, mHASTE gave approximately one half of the activation cluster size and ~20% lower BOLD contrast (Table 2). The reduction in cluster size can be related to the stringent activation threshold. When a less stringent threshold of p<0.0001 (uncorrected) was used as in Poser and Norris (2007a), we found that both mHASTE and SE-EPI indeed resulted in similar cluster sizes (data not shown).

The histogram of ΔS/S showed the narrowest distribution in mHASTE (Fig. 4a, blue line), which suggested that the underlying mechanisms for the BOLD signals were similar among the active voxels. Going from mHASTE, SE-EPI to GE-EPI (Fig. 4a), the ΔS/S range became successively wider, which indicated that BOLD contrast sources increased successively. With its refocusing pulse, SE-EPI can reduce the T2* effects in large veins and hence the contributions from static dephasing effects. The multiple refocusing pulses in mHASTE can further reduce the T2* effects in the large veins (Boxerman et al., 1995; Duyn et al., 1994; Kim et al., 1994; Lai et al., 1993; Lee et al., 1995; Menon, 2002; Segebarth et al., 1994), resulting in BOLD signals weighted more towards the diffusion-related EV dynamic averaging (Poser and Norris, 2007a). Furthermore, a reduction in T2* effects should lead to a smaller BOLD contrast and lower contrast-to-noise ratio (CNR; assuming noise level remains the same). This argues that the confidence level of fitting the BOLD signals with a general linear model is expected to decrease from SE-EPI to mHASTE (see the t-values in Table 2), instead of remaining similar (Poser and Norris, 2007a).

The above explanation is further supported by Fig. 4b, which illustrates the varying degree of dependence of ΔS/S on normalized signal intensity ||S||, from a very weak dependence in mHASTE (slope = 0.19) to a moderate negative dependence in SE-EPI (slope = −0.90) and to a strong negative dependence in GE-EPI (slope = −2.74). Similar observations on GE- and SE-EPI data have been reported at 7 T (Yacoub et al., 2005). Lack of dependence of ΔS/S on ||S|| was suggested as an evidence of the EV BOLD effects being the dominant contrast source in SE-EPI. The lack of dependence has been used to show that SE-EPI is insensitive to the BOLD effects associated with large vessels at ultra high fields. At 3 T, it is well known that GE-EPI is sensitive to BOLD effects arising from both capillary bed and large draining veins, and hence the strong dependence of ΔS/S on ||S||. Although this dependence was weakened in SE-EPI, the negative correlation in Fig. 4b was consistent with the fact that residual T2* effects in large vessels could still contribute to the BOLD contrast (Duong et al., 2003).

mHASTE, which is essentially a T2*-weighted sequence, can feature BOLD contrast in three ways: EV dynamic averaging, IV dynamic averaging, and IV T2 changes (Norris et al., 2002). With a train of refocusing RF pulses, it is believed that BOLD contrast in mHASTE arises predominantly from EV dynamic averaging. The latter two mechanisms, however, can both lead to changes in the apparent T2 of blood. Since the voxels containing larger vessels tend to have both higher intensity and greater signal changes than those containing only microvascular blood (only ~2% in volume; Leenders et al., 1990), they are expected to appear at the upper right corner of the scatter plot for

Fig. 8. Histograms of σ_{st}(t) of (a) all imaging voxels, (b) tSNR of background voxels, and (c) tSNR of in-object voxels of the resting state data from a volunteer. Each graph contains 10 curves corresponding to θ2 from 90° to 180° with a 10° increment. Separation between in-object and background voxels was done by thresholding at tSNR = 5. Voxel number was represented as a percentage relative to the total voxel number of all slices.
mHASTE, as seen in Fig. 4b. This indicates that the apparent T₂ changes in large blood vessels can still be detectable in mHASTE, provided that the confident level is sufficiently low. This argument explains why the observed cluster size of mHASTE was highly sensitive to the confident level employed in statistical analysis and became similar to that of SE-EPI when the threshold was relaxed. The relative contribution between EV dynamic averaging and apparent T₂ changes in mHASTE may depend on the details of data acquisition protocols. A quantitative relationship describing the relative contributions remains to be explored.

In this study, comparison of functional localization was performed only on the visual cortex. A retinotopic mapping experiment may provide more direct evidence on the improved spatial localization. For example, focal patches in visual field can be used to elucidate the retinotopic correspondence in V1. To perform this experiment, the slice thickness needs to be reduced (e.g., 3 mm) and the inter-slice gap eliminated to achieve an adequate resolution (Warnking et al., 2002). This experiment was attempted, but the increased slice number to cover the whole visual cortex considerably prolonged the total scan time due to SAR limitations. Additional strategies are needed to address the SAR issue before mHASTE can be practically used for retinotopic mapping.

Signal characteristics—dependence on sequence parameters

For mHASTE, the effect of multiple coherence pathways must be considered. Generally, this includes artifacts caused by the violation of the Carr–Purcell–Meiboom–Gill (CPMG) condition (Norris and Bornert, 1993) and non-T₂-weighted contrast due to the stimulated echoes. The focus of discussion here is on non-T₂-weighted contrast.

When the refocusing flip angle in mHASTE is not exactly 180°, as in the case of this study (due to SAR considerations), stimulated echoes can mix T₁-contrast into the T₂-contrast (or T₂* contrast) built up in the echo train (Williams et al., 1996). Although the T₁ contribution to the contrast may not be significant given that ncentre employed in this study was small and ESP was short (note that the minimal TR with ncentre = 5 was less than 100 ms), the formation of the stimulated echoes can reduce the signal pool that is T₂*-weighted, and hence the decreased cluster size at lower T₂ (Fig. 5a). The reduced signal pool, however, does not necessarily affect the EV dynamic averaging effect and the apparent T₂ changes in blood, thus the BOLD contrast remained relatively constant across the different T₂ values from 90° to 180° (Fig. 5b). Generally, it is advantageous to set T₂ close to 180° as possible to increase the signal pool, as also indicated by another study (Norris, 2007). Practical limitations, such as SAR considerations, may not allow a high flip angle to be used in mHASTE. With the relatively short ETL employed in this study, a moderate decrease in T₂ flip angle (e.g., from 180° to 140°) did not significantly compromise the cluster size and had negligible impact on BOLD contrast. This provides a desirable flexibility in selecting the refocusing flip angles to circumvent the SAR problem at high fields.

It is well known that BOLD effects strongly depend on TE (Duong et al., 2003; Fujita, 2001), as we also observed in this study (Figs. 5c–d). As TE became longer, the cluster size, average t-value and BOLD contrast all increased, albeit to different degrees. The linear relationship between BOLD contrast and TE is consistent with a published simulation study showing that the EV contribution to BOLD depends linearly on TE, irrespective of vessel size (Fujita, 2001). The intercept has been related to the total contributions from all non-T₂ effects (e.g., inflow). The near-zero value we observed indicates that such non-T₂ effects were very insignificant in mHASTE. Caution should be exercised since the minimal TE (i.e., 42 ms) employed in this study was not sufficiently short to show a possible non-linear relationship between BOLD contrast and shorter TE (i.e., a non-zero intercept), as predicted by the SEE theory (Stroman et al., 2001, 2002). However, even if the SEE effect had contributed, its contribution would have been similar in both mHASTE and SE-EPI and would not account for the differences between the two sequences observed in this study.

Compared to SE-EPI, mHASTE further reduces T₂* effect because of the train of RF refocusing pulses, leading to an apparent T₂ closer to T₂. This suggests that a longer TE be needed in mHASTE than in SE-EPI to provide similar BOLD effects (Jochimsen et al., 2004). In addition, a longer TE can more effectively suppress the residual IV effect (Duong et al., 2003) and enhance EV dynamic averaging (Fujita, 2001). However, a long TE can also cause a number of adverse effects. First, the signal intensity is reduced, leading to a decrease in SNR and tSNR. Considering the relatively low tSNR in mHASTE (Fig. 6, bottom row), this will likely weaken the confidence level when computing the activation maps. Second, a long TE can accentuate TSE artifacts such as blurring. Third, the number of slices that can be accommodated within a specific TR interval is reduced at a longer TE, which will limit the brain coverage or result in a longer scan time. An optimal TE must balance these conflicting factors. Our results suggest that the TE in mHASTE should be longer than the widely used TE value of 80 ms for SE-EPI at 3 T. Its upper bound is primarily determined by the SNR and the slice coverage per TR.

Dynamic averaging of BOLD contrast can be influenced by the number of refocusing pulses preceding the k-space center line acquisition (i.e., ncentre) (Poser and Norris, 2007a). We have observed that ncentre had a significant impact on cluster size and a moderate effect on BOLD contrast (Figs. 5e–f). Dynamic averaging is facilitated by diffusion through the background gradients arising from the susceptibility differences caused by paramagnetic deoxyhemoglobin. Multiple refocusing pulses can divide the background gradients into shorter segments and result in a shorter effective diffusion time for EV dynamic averaging. For IV dynamic averaging, this can be translated to a longer apparent T₂ of blood (Bryant et al., 1990; Clingman et al., 2003). The combination of both effects can lead to reduced BOLD sensitivity, which is proportional to tSNR as indicated by the decrease in both cluster size and BOLD contrast. Therefore, at a given TE value, it is advantageous to acquire as few k-space lines as possible on the under-sampled side of k-space to increase the BOLD sensitivity. On the other hand, insufficient k-space sampling can degrade the image quality in partial k-space reconstruction (note that reducing ncentre by 1 is equivalent to reducing the over-scan lines by 3 in the three-fold GRAPPA acquisition used in this study). Empirically, we have found that ncentre of 3–5 can provide a good compromise to balance these two conflicting requirements.

Noise and temporal stability in mHASTE

Even with a three-fold GRAPPA acceleration and a partial k-space acquisition, mHASTE still produced 2–3 times higher SNR than either fully sampled EPI sequences (Fig. 6, top row) when the scan times were held constant. The SNR advantage can be attributed, at least partially, to the reduced noise level (σn) in mHASTE as a result of the lower readout bandwidth. The reduced signal dephasing arising from any off-resonance effects (e.g., susceptibility effect in the through-plane direction) can be another contributing factor. The increased SNR opens opportunities to reduce the voxel size and enable the comparison of functional localization at a finer spatial resolution. Although we attempted increasing the matrix size of mHASTE to 128 × 128, the corresponding increase in ETL substantially reduced the number of slices per TR due to the SAR limits as well as a longer sequence length. As discussed previously in the retinotopic mapping experiment, additional strategies to manage SAR would be needed in order to fully exploit the potential of the mHASTE sequence.

The spatial distribution of σn,T for mHASTE was relatively uniform except for the regions around the ventricle and the occipital lobe. As σn(T) was calculated using unprocessed source images acquired at resting state, physiological noise as well as low frequency system...
drifting could be major sources of $\sigma_{S(t)}$. Specifically, the CSF flow associated with cardiac pulsation can cause considerable signal instability. This may explain the ‘hot’ voxels in the vicinity of CSF in the $\sigma_{S(t)}$ maps (Fig. 6, second row). In mHASTE, $\sigma_{S(t)}$ values were noticeably lower in the occipital lobe than the other regions of the brain. This is consistent with the fact that physiological fluctuations in the occipital lobe are less pronounced due to the lack of very large vessels and insignificant CSF. In light of the spatiotemporal noise behavior observed in this study, caution should be exercised when extending the fMRI results from the visual cortex to other areas.

The insertion of preparation time T_p in mHASTE results in a violation to the CPMG condition, which may contribute to the temporal instability in light of the dynamic processes such as pulsation and bulk motion. One strategy to reduce this source of error is to decrease the contributions from the stimulated echoes originating from the θ_1 pulse. This was done by using relatively large crusher gradients straddling the θ_1 pulse on all three axes (not shown in Fig. 1). A crusher area of 55 mT·ms/m was experimentally found to be adequate for the typical head motion of <1 mm displacement and <0.1° rotation observed in our study (calculated using SPM5). A further increase in the crusher area to 140 mT·ms/m produced substantial artifacts due to eddy currents.

With the use of the crusher gradient, we observed that the $\sigma_{S(t)}$ and tSNR distributions in mHASTE were essentially constant over a wide range of θ_1 from 90° to 180° (Fig. 8), where different degrees of stimulated echo pathways were created. This result indirectly suggests that the potential violation of the CPMG condition was effectively controlled in the mHASTE sequence. Since the stimulated echoes originating from the θ_1 pulse has been efficiently removed with crushers, the good temporal stability (Fig. 6) and lack of dependence on θ_1 (Fig. 8) also indicate that the stimulated echoes generated by the θ_2 pulse train added constructively to the primary echoes.

GRAPPA on mHASTE

The use of GRAPPA was the key element that enabled mHASTE to achieve an imaging speed comparable to EPI. Compared to SENSE that was employed in a previous fMRI study with HASTE (Poser and Norris, 2007a), GRAPPA offers at least two advantages. Firstly, by reconstructing the missing k-space lines for each receiver channel and then combining signals from all channels in a sum-of-square manner, GRAPPA can provide an excellent SNR (Griswold et al., 2002) and tSNR (Preibisch et al., 2008). Secondly, inaccurate coil sensitivity in SENSE can cause local noise enhancement in source images (Poser and Norris, 2007a; Preibisch et al., 2008). If such local noise enhancement overlaps spatially with active voxels, the SNR and CNR of the BOLD signal will be reduced. In contrast, the noise characteristics of GRAPPA are more benign and more uniformly distributed over the image (Thunberg and Zetterberg, 2007). These two advantages of GRAPPA contributed to the good image quality obtained throughout this study.

The use of three-fold acceleration in GRAPPA was determined by balancing data acquisition efficiency, SNR, SAR, image quality, and BOLD sensitivity. Decreasing the acceleration factor (e.g., two-fold acceleration) would require a longer ETL, which results in a higher SAR level because of the increased number of refocusing pulses and reduced BOLD sensitivity due to a larger n_{center}. On the other hand, increasing the acceleration factor (e.g., four-fold acceleration) led to a reduction in SNR and tSNR (Preibisch et al., 2008), as we observed in this study (data not shown).

Conclusion

By employing GRAPPA with a three-fold acceleration, we have demonstrated that the mHASTE sequence is capable of achieving similar data acquisition efficiency for fMRI to that of commonly used EPI sequences. Using mHASTE, reliable BOLD activation has been obtained on visual cortex. More importantly, we have observed evidence suggesting that mHASTE can be sensitive to EV BOLD effects around microvascular networks while downplaying BOLD contrast produced by the large draining veins, offering more accurate function localization. Experimental studies on human volunteers revealed that the activation cluster size in mHASTE increased with the refocusing RF flip angle and TE while decreasing with n_{center}. Additionally, it has also been observed that the BOLD contrast increased linearly with TE, decreased slightly with n_{center} and was insensitive to the refocusing RF flip angles. Compared to GE- and SE-EPI sequences, mHASTE produced a higher SNR and a relatively uniform tSNR. Compared to SE-EPI, mHASTE offers lower BOLD sensitivity with an ∼50% reduction in activation cluster size and an ∼20% decrease in BOLD contrast. This disadvantage may be well offset by its desirable properties, such as reduced magnetic susceptibility distortion and improved function localization. With further refinement and optimization, particularly in SAR management, mHASTE can become a viable alternative for fMRI in situations where the conventional EPI sequences are limited or prohibitive.

Acknowledgments

This work was supported in part by grants from the Ministry of Science and Technology of China (2005CB522880, 2004CB318101), the National Nature Science Foundation of China (30621004, 90820307), the Knowledge Innovation Program of the Chinese Academy of Sciences, the National Institute of Health, USA (R01 NS057514), and CCTS of the University of Illinois Medical Center at Chicago.

References

