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Abstract

2-Benzyl-5-hydroxy-4-oxopentanoic acid 1 and its enantiomers were designed, synthesized and assayed for inhibitory activity

against carboxypeptidase A (CPA, EC 3.4.17.1). To verify the role of the terminal hydroxyl group in 1 binding to CPA, 2-benzyl-5-

benzyloxy-4-oxopentanoic acid 2 was also synthesized and evaluated. The inhibition constants show that both L-1 and D-1 were

shown to have strong binding affinity with L-1 being more potent than its enantiomer by 165-fold. On the other hand, the inhibition

constant of 2 increases 4-fold comparing with that of 1. In order to explore the exact binding mode of the hydroxyacteyl group of 1 to

the active site zinc ion of CPA, we have solved the crystal structure of CPA complexed with L-1 up to 1.85 Å resolution. In CPA�L-1

complex, the phenyl ring is fitted in the substrate recognition pocket at the S01 subsite, and the carboxylate forms bifurcated hydrogen

bonds with the guanidinium moiety of Arg-145 and Arg-127 and a hydrogen bond with the phenolic hydroxyl of the down-

positioned Tyr-248. The carbonyl oxygen of L-1 does coordinate to the active site zinc ion of CPA as expectedly. Unexpectedly, the

terminal hydroxyl group of L-1 is engaged in hydrogen bonding with carbonyl oxygen of Ser-197 instead of coordinating to the

active site zinc ion.
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Zinc proteases, which are widely found in a variety of tissues, play important roles in numerous physiological and

pathological processes. The most studied drug design targets of zinc proteases are angiotensin-converting enzyme [1],

enkephalinase [2] and matrix metalloproteinases [3]. Inhibitors designed for most zinc proteases have focused on

small molecules capable of interacting with the primary recognition pocket, a peptidomimetic backbone and

incorporating a zinc-binding group (ZBG). The general strategy of incorporating a ZBG, such as carboxylic acid, thiol,

hydroxamic acid and phosphorus, for the designed inhibitors has been proven to be successful [4]. However, the

exploitation and discovery of more potent and selective ZBGs is still required [5].
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Carboxypeptidase A (CPA, EC 3.4.17.1), the first zinc protease whose crystal structure was solved by X-ray

crystallography, is one of the most extensively studied zinc-containing proteolytic enzymes and serves as a

prototypical enzyme to exploit ZBGs in the last 30 years [6]. Lee and Kim [7] designed and synthesized

hydroxyacetyl-based inactivators of CPA based on the crystal structure of CPA complexed with its substrate Gly-L-Tyr

(glycyl-L-tyrosine) in 1998 and the hydroxyacetyl group was thought to chelate the active site zinc ion. Recently

Ślepokura and Lis [8] reported the crystal structures of dihydroxyacetone (DHA) monomer complexes with CaBr2 and

CdCl2. The crystal structures show that DHA molecules chelate the cations via both the hydroxyl and carbonyl groups.

However, the binding mode of hydroxyacetyl group to the active site zinc ion of zinc proteases is still not solved. It is

therefore thought to be necessary and interesting to explore the binding mode of the hydroxyacetyl group to the active

site zinc ion for further rational designing inhibitors of zinc proteases.

We reported herein the synthesis of 2-benzyl-5-hydroxy-4-oxopentanoic acid 1 and its enantiomers as inhibitors of

CPA. To verify the role of the terminal hydroxyl group in 1 binding to CPA, 2-benzyl-5-benzyloxy-4-oxopentanoic

acid 2, the analogue of 1, was also synthesized and evaluated. To further explore the exact binding mode of the

hydroxyacetyl group in 1 to the active site zinc ion of CPA, the complex of CPA�L-1 was performed and its crystal

structure was investigated using X-ray diffraction method.

Compound 1 was prepared utilizing 2-benzylsuccinic acid mono tert-butyl ester as starting material and its

enantiomers were prepared following the same procedure as for 1 starting with optical 2-benzylsuccinic acid mono

tert-butyl ester. Replacing the terminal bromo group of 4 with sodium formate dihydrate [9] followed by hydrolysis

[10] resulted in each of the forms of 1 required (Scheme 1). Compound 2 was synthesized by allowing benzyl bromide

to react with 5 in presence of freshly prepared Ag2O [11] followed by hydrolysis in acidic condition [10] (Scheme 1).

The prepared compounds were evaluated as CPA inhibitors by a standard procedure [15] to find that they inhibit the

enzyme in a competitive reversible fashion as can be seen from Fig. 1.

Their inhibitory constants (Kis) obtained from Dixon’s plots (Fig. 1) are listed in Table 1. All of these compounds

should be active-site-directed inhibitors because they satisfy the essential requirements for CPA recognition, i.e., a

terminal carboxylate, a hydrophobic side chain and a zinc-binding group [12]. The finding that the L-1

(Ki = 0.86 mmol L�1) shows 165-fold more potent inhibition against CPA than the corresponding D-1

(Ki = 143 mmol L�1) is consistent with the L-specificity of CPA [13]. The inhibition constant of rac-2

(Ki = 42 mmol L�1) increases 4-fold comparing with that of rac-1 (Ki = 8.0 mmol L�1), which suggests strongly

that the hydroxyl group of rac-1 must involve in additional binding interaction in the inhibitor binding to CPA.

The X-ray crystal structure of the CPA�L-1 complex has been refined at 1.85 Å resolution to a final R-factor of

0.238. The atomic coordinates and structure factors of the CPA�L-1 complex have been deposited with the Brookhaven

Protein Data Bank (PDB ID 3FVL).

The final model of the complex exhibits the details of L-1 binding to CPA (Fig. 2). The carboxylate of L-1 is

engaged in bifurcated hydrogen bonding with one of nitrogen atoms in the guanidinium moiety of Arg-145 (3.15 Å)

and Arg-127 (2.76 Å). The aromatic side chain of Tyr-248 is found in the ‘‘so-called’’ down position and its phenolic

hydroxyl is engaged in hydrogen bonding with the terminal carboxylate of L-1 (2.54 Å) and the zinc-bound water

molecule that is found in the native CPA is absent in the complex (Fig. 2, right). The phenyl ring of L-1 is

accommodated in the S01 hydrophobic pocket, the primary recognition site of CPA (Fig. 2, left). These binding
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Scheme 1. Prepared 1 and 2: (a) (i) ClCOOBu�t, N-Me morphorine, Et2O, �10 8C, 15 min; (ii) CH2N2, Et2O, �10 8C, 15 min and then r.t.,

overnight; (iii) HBr (48%), CH2Cl2, r.t., 15 min; (b) HCO2Na�2H2O, EtOH, reflux, 12 h; (c) TFA, CH2Cl2, r.t., 24 h; (d) BnBr, Ag2O, CH2Cl2, r.t.,

12 h.



interactions are reminiscent of those reported the complexes of CPAwith its inhibitors [14]. It is interestingly to notice

that the carbonyl oxygen of L-1 is separated from the active site zinc ion by 2.25 Å, which suggests that it is ligated to

the zinc ion. However, the terminal hydroxyl group of L-1 is separated from the active site zinc ion by 4.04 Å,

suggesting that it is not ligated to the zinc ion. In addition, its carbonyl oxygen is involved in hydrogen bonding with

one of carboxylate oxygen atoms of Glu-270 with bonding distance of 2.63 Å. Most interestingly, a hydrogen bond is

formed between the terminal hydroxyl group and the carbonyl oxygen of Ser-197 with bonding distance of 2.71 Å
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Fig. 1. The Dixon plot.

Table 1

Inhibitory constants for CPA inhibition.

Compounds Ki (mmol L�1)

rac-1 8.0

L-1 0.86

D-1 143

rac-2 42

Fig. 2. The stereo-view of the CPA�L-1 complex (left) and the interactions of L-1 with the residue of CPA [distance (Å)] (right).



(Fig. 2, right). It should attribute to the additional hydroxyl-carbonyl-type hydrogen bond that makes the inhibitory

activity of rac-1 against CPA more potent than that of rac-2. The binding mode of hydroxyacetyl group of L-1 with

CPA presented is not consistent with the binding mode proposed by Lee and Kim [7] or the exact binding mode of

DHA to metal ion such as Cd (II) and Ca (II) reported by Ślepokura and Lis [8].

In conclusion, compound 1 and its enantiomers capable of hydroxyacetyl group were synthesized and evaluated.

The inhibitory constants show that L-1 has more potent binding affinity than its corresponding D-1 by 165-fold. The

crystal structure of CPA�L-1 complex reveals that L-1 does with its carbonyl oxygen coordinating to the active site zinc

ion of CPA. Unexpectedly, the terminal hydroxyl group of L-1 is involved in hydrogen bonding with the carbonyl

oxygen of Ser-197 instead of coordinating to the active site zinc ion, which is not consistent with the binding mode

proposed in previous papers. The design strategy demonstrated and the exact binding mode of hydroxyacetyl group of

L-1 to the active site zinc ion of CPA in this work may be of considerable interest to those who are engaged in the

rational design of inhibitors for zinc-containing proteases.
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