Regulatory role of the extreme C-terminal end of the S6 inner helix in C-terminal-truncated Kv1.2 channel activation

Li-Li Zhao, Zhi Qi, Xian-En Zhang, Li-Jun Bi and Gang Jin

1 National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
2 National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, China
3 State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
4 State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

The transmembrane part of the S6 inner helix of the Kv1.2 potassium channel is a pivotal part in sustaining channel activity. However, the role of its extreme C-terminal end, which is located on the cytoplasmic side of the channel, is largely unknown. Here, we investigated the role of the extreme C-terminal end of the S6 inner helix (the HRET region) by constructing a series of C-terminal-truncated mutations related to this region in the C-terminal-truncated Kv1.2 channel. Mutations on Thr^{421} or Glu^{420} significantly altered the activation of the truncated channel. Mutations on Arg^{419} demonstrated that neutral or basic, but not acidic amino acid, is essential at the position for the truncated channel activation, and no functional channel was observed when the channel was truncated from His^{418}. Hence, our results indicate that the extreme C-terminal end of the S6 inner helix plays an important regulatory role in the activation of the C-terminal-truncated Kv1.2 channel.

Keywords: activation; Kv1.2 channel; patch-clamp; surface expression; S6 inner helix

1. Introduction

The Kv1.2 channel is a low-threshold, rapidly activating voltage-gated potassium channel in mammalian neurons (Stuhmer et al., 1989). It plays fundamental roles in generating electrical pulses and regulating membrane potential in brain and neuronal connections (Hoshi et al., 1990). The physiological importance of the Kv1.2 channel has been underscored by the recent findings that the Kv1.2 knockout mice exhibit enhanced seizure susceptibility and die in the third postnatal week (Brew et al., 2007).

The mature Kv1.2 potassium channels are tetramers, with each subunit containing six transmembrane segments that are named S1-S6. The S1-S4 segments form the region that senses changes in membrane voltage. The S5-S6 segments form the ion conduction pore, providing a pathway for ions to cross the membrane in the open state. When the channel closes, ion permeation is minimized by an activation gate that locates near the intracellular entrance to the pore in the S6 segment (Holmgren et al., 1997, 1998; del Camino and Yellen, 2001; Zhou et al., 2001; Schoppa and Sigworth, 1998; Hackos et al., 2002; Yifrach and MacKinnon, 2002; Soler-Llavina et al., 2006). Moreover, mutants that lack the preceding NFN, YFY or other combinations of residues in the S6 inner helix do not express current (Lu et al., 2001, 2002).

As for the HRET region located immediately downstream from the PVPVIVSNFNFNYFY (Figure 1), it is only known that a truncation in this region in the Kv1.1 channel is related to human EA-1 (episodic ataxia type-1) (Eunson et al., 2000). Because the HRET region is highly conserved in Kv1 channels, we supposed that the HRET region probably played important roles for the Kv1.2 channel.

Here we addressed the function of the HRET region in the Kv1.2 channel by constructing a series of C-terminal truncations related to the region. In Shaker family Kv channels, the cytoplasmic C-termini are involved in many processes that range from channel gating (Hopkins et al., 1994; Jerne and Covarrubias, 1997) to voltage sensitivity (Martens and Hoshi, 1998). Therefore, to

![Figure 1](https://example.com/figure1.jpg)

Figure 1. The S6 inner helix and part of the C terminus sequence of the Kv1.2 potassium channel (NP_037102) helix of Kv channels have profound effects on gating (Liu et al., 1997; Schoppa and Sigworth, 1998; Hackos et al., 2002; Yifrach and MacKinnon, 2002; Soler-Llavina et al., 2006). Moreover, mutants that lack the preceding NFN, YFY or other combinations of residues in the S6 inner helix do not express current (Lu et al., 2001, 2002).

Arrow heads indicate the five truncating sites. 1: Kv1.2 417stop, 2: Kv1.2 418stop, 3: Kv1.2 419stop, 4: Kv1.2 420stop, 5: Kv1.2 421stop.
avoid the influence of the cytoplasmic C-terminus, we removed the whole C-terminus of the channel in our experiments. Our observation demonstrated that this region not only plays important roles in regulating the activation of the C-terminal-truncated Kv1.2 channel, but also affects the expression level of the truncated channel on the plasma membrane.

2. Materials and methods

2.1. DNA constructs and mutagenesis

Rat brain Kv1.2 cDNA was a gift of Dr YN Jan (Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, U.S.A.). All DNA sequences of mutants were obtained through PCR-based mutagenesis and subcloned into pCDNA3.1(−) vectors (Invitrogen) between BamHI and HindIII sites for expression in mammalian cells. The sequences of the inserted segments were confirmed by the DNA sequencing.

2.2. Expression of the channels in CHO (Chinese hamster ovary) cells

CHO–K1 cells were maintained in continuous culture. The cells were transiently co-transfected with recombination plasmids and pEGFP (Clontech) plasmids at a ratio of 5:1 (weight/weight) using LipofectAMINE Plus™ reagent (Invitrogen) and assayed for electrophysiological measurements 24–48 h after transfection.

2.3. Electrophysiological recordings

Voltage-clamp recordings were performed using the EPC-9 patch-clamp amplifier (HEKA). Pipette and membrane capacitances were compensated automatically with the amplifier. Pipette-to-bath resistances ranged between 2 and 4 MΩ with intracellular solution containing (in mM): 140 KCl, 2 MgCl₂, 2 CaCl₂, 1 EGTA, 2 Na₂ATP and 10 HEPES at pH 7.3 (KOH). The bath solution was HBSS (Hanks’ balanced salts solution, Sigma) containing (in mM): 1.3 CaCl₂, 0.8 MgSO₄, 5.4 KCl, 0.4 KH₂PO₄, 136.9 NaCl, 0.3 Na₂PO₄, 10 D-glucose and 4.2 NaHCO₃. The membrane potential was held at −100 mV and depolarized for 300 ms to +80 mV in 20 mV increments. Non-transfected CHO cells exhibited no voltage-gated or very small whole cell outward currents (50–100 pA), whereas cells transfected with wild-type Kv1.2 channels and some Kv1.2 mutations exhibited currents greater than 1nA. All results were repeated three times with ≥3 cells in each experiment. All experiments were performed at room temperature (23–25°C).

2.4. FACS analysis

Kv1.2, Kv1.2,419stop and Kv1.2,418stop were engineered with the flag epitope (DYKDDDDK) on D194 of their extracellular S1–S2 linkers. EGFP–Kv1.2–flag, EGFP–Kv1.2,419stop–flag and EGFP–Kv1.2,418stop–flag were constructed by inserting the coding sequence of EGFP (enhanced green fluorescent protein; Clontech) into these three reconstructed vectors between NotI and BamHI sites. All these sequences were confirmed by DNA sequencing. The three reconstructed plasmids were transfected into CHO cells respectively. After 24–36 h, the transfected CHO cells were washed three times with PBS and incubated with PE (phycocerythrin)-labelled mouse anti-flag antibody (Martek Biosciences) for 30 min at 37°C. The transfected cells without the antibody served as the blank control. After being washed three times, the cells were then resuspended in PBS for quantifying the fluorescence by flow cytometry as described (Nesti et al., 2004). WinMDI 2.9 software (J. Trotter, Scripps Research Institute, La Jolla, CA) was used for flow cytometry data analysis. EGFP positive (EGFP⁺) cells denoted the cells expressing the Kv1.2 channel or its truncations. EGFP and EGFP/PE⁺ (EGFP and PE positive) cells denoted the cells with surface expression of the Kv1.2 channel or its truncations. Relative surface expression level was calculated as the number of EGFP/PE⁺ cells divided by that of EGFP⁺ cells. The relative surface expression level of EGFP-Kv1.2-flag was set at 1.0.

2.5. Data analysis

Data were analysed with Origin 7.0 (Origin Lab). The peak I (current amplitude) at each test potential was converted into G (conductance) using the equation

\[G = I / (V - E_k) \]

The Nernst potassium ion equilibrium potential \(E_k \) was calculated as −84 mV. The normalized conductance G was plotted against the V (test potential) and fitted to a single Boltzmann equation

\[G / G_{\text{max}} = 1 / [1 + \exp(- (V - V_{1/2}) / k)] \]

where \(G_{\text{max}} \) is the maximum conductance, \(V_{1/2} \) is the voltage at half-maximal activation and k is the slope factor. The activation time constant was fitted with one exponential component according to

\[I = A[1 - \exp(-t/r)] \]

Data are expressed as mean ± S.E.M. Significance among multiple groups was determined by ANOVA (one-way analysis of variance). Statistical significance was set at \(P < 0.05 \).

3. Results

3.1. Functional Kv1.2 channel without cytoplasmic C-terminus

To investigate the effect of the extreme C-terminal end of the S6 inner helix in the Kv1.2 potassium channel activation, we truncated the C-terminus at Thr⁴²¹ site to obtain the Kv1.2,421stop truncated channel, in which the cytoplasmic C-terminus of the...
channel was completely deleted. This truncation and the wild-type Kv1.2 channel were each co-transfected into CHO cells with EGFP to facilitate detection of the transfected cells. Fluorescent cells were selected for electrophysiological measurement. Cells transfected with the wild-type and the truncated Kv1.2 channel (Kv1.2421stop) are both functional (Figure 2A). This result indicates that the cytoplasmic C-terminus is not essential for forming a functional Kv1.2 channel.

The activation properties of Kv1.2 channels are highly variable, with reported $V_{1/2}$ values ranging from −40 to +30 mV (Grissmer et al., 1994; Steidl and Yool, 1999; Minor et al., 2000; Scholle et al., 2004; Rezazadeh et al., 2007). Here our results showed the $V_{1/2}$ value was 17.5 ± 1.9 mV for the Kv1.2 channel (n=9). Compared to the wild type, the Kv1.2421stop truncated channel ($V_{1/2}$: −1.8 ± 2.9 mV, n=8) caused the activation curve of the channel to shift by ≈20 mV towards hyperpolarizing potentials (Figures 2B and 2C). Furthermore, the activation time constant was also significantly altered with the mutation. The activation constant was 7.2 ± 1.4 ms for the wild-type Kv1.2 channel, while it was 3.0 ± 0.7 ms for the Kv1.2421stop truncated channel at +40 mV (Figure 2D). These differences suggested that the cytoplasmic C-terminus of the Kv1.2 channel could affect the activity of the channel.

3.2. Regulatory role of Thr^{421} in the activation of the channel

To understand the role of Thr^{421} on the channel activation, we introduced mutations of T421A (Kv1.2 T421Astop) and T421S (Kv1.2 T421Sstop) on the Kv1.2421stop channel. Analysis of the activation curves revealed that the $V_{1/2}$ value was 28.3 ± 2.5 mV for the Kv1.2 T421Astop (n=6) or 24.2 ± 3.0 mV for the Kv1.2 T421Sstop (n=7) (Figures 2B and C), shifted by ≈26 mV towards depolarizing potentials compared to that of the Kv1.2421stop channel. Similarly, the activation time constants for both the Kv1.2 T421Astop (8.3 ± 1.4 ms) and the Kv1.2 T421Sstop (8.1 ± 2.0 ms) were significantly different from that of the Kv1.2421stop channel (3.0 ± 0.7 ms) at +40 mV (Figure 2D).

We continued to delete the Thr^{421} on the Kv1.2421stop channel to obtain Kv1.2420stop truncation. In contrast with Kv1.2421stop truncation, the activation curve of the Kv1.2420stop truncated

Figure 2 The roles of Thr^{421} on the activation of the Kv1.2 truncated channel

(A) Current records from Kv1.2 wild type, Kv1.2421stop, Kv1.2 T421Astop, and Kv1.2420stop channels. (B) Activation curves of Kv1.2 wild type, Kv1.2421stop, Kv1.2 T421Astop, and Kv1.2420stop channels. Smooth curves through the data represent fits to the mean values with the Boltzmann function. (C) Statistics on $V_{1/2}$ values of Kv1.2 wild type, Kv1.2421stop, Kv1.2 T421Astop, and Kv1.2420stop channels. (D) Statistics on the activation time constants of Kv1.2 wild type, Kv1.2421stop, Kv1.2 T421Astop, and Kv1.2420stop channels at +40 mV. Numbers in parentheses represent the total number of independent experiments. Significant difference was analysed by comparing Kv1.2421stop with Kv1.2 channel, and Kv1.2421stop with each of its mutants. *P<0.05. **P<0.01.
channel shifted significantly to more positive potentials ($V_{1/2}$: 22.5 ± 1.3 mV, $n=5$) ($P<0.0001$), which is similar to those of the Kv1.2418stop mutations (Kv1.2R419Kstop and Kv1.2R419Lstop). The activation time constant of Kv1.2420stop (6.3 ± 1.5 ms) at +40 mV was also different from that of Kv1.2421stop and similar to those of the Kv1.2420stop mutations (Kv1.2T421Astop and Kv1.2T421Sstop). Hence, mutating or deleting the last amino acid of the S6 inner helix (Thr421) shifted the activation curve with significant difference in the $V_{1/2}$ values.

3.3. Regulatory role of Glu420 in the activation of the channel

Next, we examined the function of Glu420, which is the only amino acid carrying a hydrophilic acidic group with strong negative charge in the HRET region. At first, Glu420 was mutated to acidic amino acid, aspartic acid (Kv1.2E420Dstop); neutral amino acid, alanine (Kv1.2E420Astop); or basic amino acid, arginine (Kv1.2E420Rstop) respectively. The G–V curve for the Kv1.2E420Dstop ($V_{1/2}$: 28.7 ± 2.5 mV, $n=6$) shifted slightly towards depolarizing potentials compared with the Kv1.2420stop channel (Figures 3A and 3B). In contrast with the acidic acid substitution at Glu420, mutations to alanine ($V_{1/2}$: 10.9 ± 2.5 mV, $n=5$) and arginine ($V_{1/2}$: 11.8 ± 3.8 mV, $n=6$) caused large negative shifts in the activation G–V curves. The activation time constants of Kv1.2420stop mutations at +40 mV are 5.6 ± 1.6 ms for Kv1.2E420Dstop, 4.2 ± 1.6 ms for Kv1.2E420Astop and 4.5 ± 0.8 ms for Kv1.2E420Rstop (Figure 3C).

Then, we truncated Glu420 on the Kv1.2420stop channel to produce the Kv1.2419stop truncation. For the G–V relationship, Kv1.2419stop ($V_{1/2}$: 5.9 ± 3.9 mV, $n=6$) was very similar to Kv1.2E420Astop, but shifted significantly to the left compared with Kv1.2420stop ($P<0.01$), Kv1.2E420Dstop and Kv1.2E420Rstop. These findings demonstrated that the negative charge at the position of 420 is critical to the voltage-dependent gating of the channel.

3.4. Regulatory role of Arg419 in the activation of the channel

To get insight into the effects of Arg419, we mutated it to positively charged lysine (Kv1.2R419Kstop), hydrophobic leucine (Kv1.2R419Lstop), hydrophilic asparagine (Kv1.2R419Nstop) and negatively charged aspartic acid (Kv1.2R419Dstop) respectively. The activation curve of the mutated channel was similar to that of Kv1.2419stop when the arginine was replaced by lysine (Kv1.2R419Kstop: $V_{1/2}$: 6.5 ± 2.7 mV, $n=6$) or hydrophobic leucine (Kv1.2R419Lstop: $V_{1/2}$: 10.3 ± 3.5 mV, $n=7$), but shifted largely to more positive potentials with the arginine substituted by a hydrophilic neutral amino acid (Kv1.2R419Nstop: $V_{1/2}$: 16.5 ± 2.5 mV, $n=6$) (Figures 4A and 4B). Figure 4C showed the activation time constant of Kv1.2419stop and mutated channels at +40 mV. The τ values of these channels were 4.9 ± 1.4 ms for Kv1.2419stop, 3.8 ± 0.8 ms for Kv1.2R419Kstop, 4.9 ± 0.9 ms for Kv1.2R419Lstop and 6.7 ± 2.0 ms for Kv1.2R419Nstop respectively. Thus, the hydrophobic property of the amino acid at the site 419 has influence on the activation of the channel. However, there was no functional channel current when the positively charged Arg419 was mutated to negatively charged aspartic acid ($n=14$). This result meant that a non-negatively charged amino acid at 419 is necessary for the channel function.

We further truncated Arg419 to produce the Kv1.2418stop truncation, which added the stop codon after residue His418 to the C-terminal end. After deletion of the whole C-terminus of the Kv1.2 channel and the last two residues of the S6 inner helix, Kv1.2419stop could express voltage-activated outward currents. However, deletion of more amino acid residues of the S6 inner helix, i.e. Kv1.2418stop and Kv1.2417stop no longer produced functional channels despite increase in the amount of the plasmids ($n=19$ for Kv1.2418stop and $n=13$ for Kv1.2417stop). This finding suggested that Arg419 was critical in sustaining channel function.
3.5. Membrane surface expression of Kv1.2419stop and Kv1.2418stop

To judge if the non-functional Kv1.2418stop channel is a result of its inability to express on the membrane, we used flow cytometry to detect the fluorescent anti-flag antibody bound to the EGFP-Kv1.2418stop-flag, EGFP-Kv1.2419stop-flag and EGFP-Kv1.2-flag respectively. The EGFP-Kv1.2418stop-flag truncation exhibited fewer EGFP+PE+ cells compared with that of the EGFP-Kv1.2419stop-flag channel and the EGFP-Kv1.2-flag channel (Figure 5A). The surface expression level of the channels was obtained by dividing the number of EGFP+PE+ cells by the number of EGFP+ cells. Normalized to the surface expression level of the Kv1.2 channel, the relative surface expression level was 22% and 56% for the Kv1.2418stop and Kv1.2419stop channels respectively (Figure 5B). Though the Kv1.2418stop channel had a lower expression on cell membrane than Kv1.2419stop, it could distribute on the membrane surface. These observations demonstrated that the lack of ionic current for the Kv1.2418stop channel did not arise from its inability to traffic to the membrane surface.

4. Discussion

Our studies indicated that the HRET region in the C-terminal truncated Kv1.2 channels could regulate the channel activation. Within the HRET region, Thr421 is the amino acid closest to the C-terminus. Deleting Thr421 (Kv1.2420stop) or mutating it to alanine (Kv1.2T421Astop) will make the channel more difficult to open than Kv1.2421stop. The detailed mechanism of modulating channel activation by Thr421 is not clear yet. In light of the capability of Thr421 to be phosphorylated in the Kv1.2 channel (Munton et al., 2007), we suppose that the modulation of Thr421 on the channel presumably relates to its phosphorylation. Notably, the substitution of Thr at position 421 with Ser (Kv1.2T421Sstop), which is structurally similar to Thr and can also be phosphorylated, could change the behaviour of Kv1.2421stop. This phenomenon also
Regulation of Kv1.2 channel activation

appeared in some other channels (Kuzmenkin et al., 2003; Shemon et al., 2006). It remains to be determined if the reason is due to change in phosphorylation or otherwise.

Glutamic acid, arginine and histidine are charged amino acids in the HRET region. The substitution of Glu420 in the C-terminal of Kv1.2 could result in a more acidic environment, which may lower the affinity of the channel for its ligand. However, substitution of Glu419 would have a similar effect.

Glu419 is located in the S4-S5 linker region. Asp540 of the S6 end and the Asp540 of the S4-S5 linker in the hERG channel are involved in the direct electrostatic interactions between the Arg665 of the C-terminal of Kv1.2 and the S4-S5 linker because the HRET region directly follows the S4-S5 linker in the Kv1.2 channel. Another possibility is that mutations of Glu420 with neutral (Kv1.2 E420A) or basic amino acid (Kv1.2 E420K) would affect the interaction between NFNYFY and the S4-S5 linker because the HRET region directly affects the interaction between NFNYFY and the S4-S5 linker.

Why is the HRET region critical for channel activation? We propose two possibilities. One possibility is that the HRET region might be a direct interaction between the HRET region and the S4-S5 linker. Although this hypothesis remains speculative, some studies have shown that the direct electrostatic interactions between the Arg665 of the S6 end and the Asp540 of the S4-S5 linker in the hERG channel (Tristani-Firouzi et al., 2002; Vicente et al., 2006) influence the direct interaction between the HRET region and the S4-S5 linker.

In summary, our studies suggest that the HRET region plays a vital regulatory role in the activation of the C-terminal-truncated Kv1.2 channel.

Acknowledgements

We thank Mr Chun-Chun Liu for flow cytometry technical assistance.

Funding

This work was partly supported by the 973 programme [grant numbers 2006CB911003, 2005CB522804]; and the NSFC (National Science Foundation of China) [grant number 30470447].

References

Funding

This work was partly supported by the 973 programme [grant numbers 2006CB911003, 2005CB522804]; and the NSFC (National Science Foundation of China) [grant number 30470447].

Author contribution

Li-li Zhao carried out the experimental data collection and processing. Li-li Zhao, Zhi Qi and Xian-en Zhang participated in the design of the study. Li-li Zhao, Zhi Qi, Li-jun Bi and Gang Jin drafted the manuscript. Li-jun Bi and Gang Jin conceived and co-ordinated the study. All authors have read and approved the final manuscript.

Author contribution

Li-li Zhao carried out the experimental data collection and processing. Li-li Zhao, Zhi Qi and Xian-en Zhang participated in the design of the study. Li-li Zhao, Zhi Qi, Li-jun Bi and Gang Jin drafted the manuscript. Li-jun Bi and Gang Jin conceived and co-ordinated the study. All authors have read and approved the final manuscript.

Acknowledgements

We thank Mr Chun-Chun Liu for flow cytometry technical assistance.

Funding

This work was partly supported by the 973 programme [grant numbers 2006CB911003, 2005CB522804]; and the NSFC (National Science Foundation of China) [grant number 30470447].

Lu Z, Klem AM, Ramu Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 2002;120:663–76.

Marten I, Hoshi T. The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J 1998;74:2953–62.

Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, Berger JM. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 2000;102:657–70.

Rezazadeh S, Kurata HT, Claydon TW, Kehl SJ, Fedida D. An activation gating switch in Kv1.2 is localized to a threonine residue in the S2-S3 linker. Biophys J 2007;93:4173–86.

