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FIG. 4. Conformational features of peptide N1 in the binding groove of HLA-A*2402. (A) D4, N5, and V6 in the middle part of peptide N1
(yellow) bulge out of the peptide binding groove, with the backbone of the three residues rising about 2.3 A compared to peptide VYG (pink; PDB
ID no. 2BCK). (B) The distance between B-carbons of the residues at position 2 and position 9 of N1 (yellow) and VYG (pink) shows the whole
length of N1 adopts a more bulged conformation. (C) Two intrachain hydrogen bonds are formed between K3 and N5 and also between N5 and
17, respectively. The side chains of residues D4 and V6, between the two hydrogen bonds, protrude out of the HLA groove and may play a
dominant role in the TCR-MHC docking. (D) Central residues of N1 interact with a-helix of HLA-A*2402 through two water molecules.

HLA-A24 surface for potential TCR docking. The distinct
“A”-shaped conformation raised the backbone of the central
region residues of peptide N1 about 2.3 A compared to VYG
(the distance between a-C of D4 of N1 and F4 of VYG) (Fig.
4A). Although the side chains of D4 and V6 of N1 are quite
shorter than the corresponding residues in VYG, F4 and R6,
the main chain ascending from N1 enables the side chain ends
of D4 and V6 to reach out to an incredible level from the
peptide binding groove of HLA. Especially, the side chain of
D4 of N1 is raised to the same level as F4 of VYG, which may
be helpful for TCR docking. The distance between B-carbons
of the residues at position 2 and position 9 of N1 is shorter than
that of VYG. The distance between -carbons of F2 and L9 for
N1is 17.6 A, and for Y2 and L9 of VYG, it is 18.8 A (Fig. 4B).
This phenomenon demonstrates that, not only the central re-
gion, but also the overall main chain of N1 adopts a more
bulged conformation, while that of peptide VYG is a relatively
extended one. This may also contribute to the protruding ex-
tent of the residues at the central region of N1, which can be
defined to have the featured characteristic when presented by
HLA-A24.

Further analysis of the HLA-A*2402/N1 structure indicated
a distinct structure of the N1 peptide in the groove may facil-
itate the formation of the exclusive conformation of peptide
N1. First, the presence of two intrachain hydrogen bonds in the
ligand peptide is rarely found among the HLA ligand peptides.
The carbonyl oxygen atom of N5 shares the hydrogen atom
with the amino group of the side chain of K3 and the amino

nitrogen of 17, respectively, to form two intrachain hydrogen
bonds (Fig. 4C). These two intrachain hydrogen bonds act as
the transverse line in the “A”-shaped conformation of N1 to
help the rigid conformation become more stable. Second, the
vacuous space formed by the stretching of the two hydrogen
bonds is occupied by two water molecules. Residues N5 and 17
interact with these water molecules and are fixed to the al-
helix of HLA-A24 (Fig. 4D). No water molecules are found
under the main chain of VYG in the HLA-A*2402/VYG struc-
ture.

Investigation of the immunogenicity of N1 with PBMCs of
HLA-A24 in donors recovered from SARS. To determine the
immunogenicity of peptide N1, PBMCs of HLA-A24™ donors
recovered from SARS were stimulated for 9 days in the pres-
ence of peptide N1. The induction of IFN-y was revealed by
the ELISPOT assays with the peptide N1 and two overlapping
peptides NC9585 and NC9586 as stimulators. As shown in Fig.
5, N1 significantly elicited specific IFN-y-producing CD8" T
cells from the PBMCs of HLA-A24" donors recovered from
SARS in comparison to the HLA-A24~ donors recovered from
SARS and HLA-A24" healthy controls (60.5 = 20.8 versus
6.9 = 5.4 and 1.3 = 0.9 spot-forming cells (SFC)/10° PBMCs;
P < 0.01). The overlapping peptides, NC9585 and NC9586,
also possessed the ability to stimulate specific IFN-y produc-
tion in the HLA-A24" donors recovered from SARS in com-
parison to the negative controls (P < 0.01). This indicated that
these two peptides (which cover the N1 peptide) possessed
cross-immunogenicity with peptide N1.
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FIG. 5. Detection of peptide N1-specific CD8" T cells in PBMCs
of HLA-A24" donors recovered from SARS by ELISPOT. The mean
numbers of SFCs in 10° splenocytes are represented with bars as a
measure of IFN-vy secretion from human PBMCs stimulated with pep-
tides. The PBMC samples from two HLA-A24" donors recovered
from SARS were thawed and manipulated in ELISPOT assays.
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Consequently, the HLA-A*2402/N1 tetramer was prepared
and used to confirm the frequency of N1-specific CD8" T cells.
PBMCs from HLA-A24" donors recovered from SARS and
HLA-A24" healthy donors were stained with HLA-
A*2402/N1 tetramer after 9-day incubation with N1 and
rhIL-2. An average of 0.2% of CD8" T cells were determined
as N1l-specific CD8" T cells from PBMCs of the HLA-A24™"
donors recovered from SARS. In contrast, no Nl-specific T
cells were detectable from the PBMCs of all tested HLA-A24™
healthy controls (Fig. 6A).

In the proliferation assay, peptide N1 significantly induced
proliferation responses among HLA-A24" donors recovered
from SARS as measured by CFSE dilution (Fig. 6B), rather
than HLA-A24" healthy controls (19% versus 4%). Further-
more, when PBMCs were stimulated with negative control
HIV p24 protein, the proliferation rates showed no significant
difference between HLA-A24" donors recovered from SARS
and HLA-A24" healthy controls (1% versus 2%).

DISCUSSION

Antigenic peptides recognized by virus-specific CTLs are not
only useful tools for studying cellular immunity against virus,
but also potential reagents for development of immunother-
apy. However, the identification of novel CTL epitopes is gen-
erally time-consuming and labor-intensive. A large number of
15- to 20-mer peptides with determined immunogenicity for
CTLs against viruses as SARS-CoV and influenza virus have
been identified without awareness of the HLA allele (19, 21).
The immunogenicities of the peptides are evaluated by immu-
nological approaches like cytokine-specific ELISPOT or flow
cytometry (23, 32). However, to identify naturally presented
optimal epitopes within these long peptides and the HLA
allele restriction of these peptides, a large amount of work is
still required (2, 27). In a previous study, we have identified
two long immunogenic domains within the sequence of SARS-
CoV N protein, using the overlapping 15- to 18-mer peptides
(21). In this study, we illustrate an efficient and rapid strategy
to define minimal natural CTL epitopes presented by a specific
HLA allele, HLA-A*2402, while targeting long overlapping
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FIG. 6. Identification of the immunogenicity of N1 by fluorescence
staining and flow cytometry. (A) In tetramer staining, N1-specific CD8"* T
cells were measured from N1-stimulated PBMCs of an HLA-A24" donor
recovered from SARS (patient 1) and an HLA-A24" healthy donor
(donor 1), using the PE-labeled HLA-A*2402/N1 tetramer along with
PE-Cy5-labeled anti-CD3 and FITC-labeled anti-CD8 MAbs for cell
staining. (B) PBMCs from an HLA-A24" donor recovered from SARS
(patient 3) and an HLA-A24" healthy donor (donor 2) were stained with
1 pM CFSE and stimulated by peptides for 7 days. Panels represent
percentages of cells that have undergone divisions.

peptides. Peptide N1 derived from SARS-CoV N protein was
identified as an immunodominant epitope with a featured con-
formation when binding to HLA-A*2402.

As a nonameric peptide, N1 has no residues with long side
chains but shows an immunodominant featured character (21).
There are common indications that featured peptides with
exposed side chains can generate a more diverse T-cell reper-
toire than flat, featureless peptides (15, 28, 39, 44, 45). How-
ever, how would the “featureless” amino acid contents of N1
help the peptide become a featured epitope? Our study in this
report shows that N1 takes use of a featured “A”-shaped con-
formation with the side chain of N5 in position 5 projecting out
of the peptide binding groove, instead of acting as a middle,
secondary anchoring residue (7). The side chains of the central
region of N1 protrude to the same level as peptide VYG, which
has the characteristic featured residues (7). Taking advantage
of this strategy, HLA-A*2402/N1 represents a typical struc-
tural landscape for a featured peptide which may help to gen-
erate a more diverse T-cell repertoire. This intrachain hydro-
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FIG. 7. Topology of the newly identified presentation strategy of featured peptides. Featureless peptides have a typical amino acid length (8
to 10 amino acids) but have few or no solvent-exposed residues with prominent side chains (A and D). The previously determined characteristic
of featured peptide is defined as type 1 featured peptide (B). These peptides comprise solvent-exposed residues presenting prominent side chains
for recognition by a diverse TCR repertoire (C). In this study, a new presentation strategy of featured peptides was identified (E). Peptide without
solvent-exposed residue arches itself through intrachain hydrogen bonds and water molecules under the main chain of the peptide. Through this
strategy, short side chains of peptide N1 (yellow) protrude to the level of solvent-exposed residues of peptide VYG (pink) and may be recognized

by an immune T-cell repertoire of high diversity (F).

gen-bonding strategy of the host antigen presentation might
represent a second type (type 2) of featured epitope in addition
to the previously defined type with characteristic long-side
chain residues (type 1) (44). This may help us to understand
the peptide presentation strategy of the host: exposing the
shorter side chain amino acid by making the middle region
bulge through intrachain hydrogen bonds to make the peptide
a featured epitope (Fig. 7).

The formation of the particular conformation of N1 may be
partially due to the contrast of biochemical qualities between
the residues in position 5 of peptide N1 and VYG. The D
pocket of the HLA-A24 peptide binding groove is hydrophobic
and can accommodate the side chain of valine from position 5
of VYG with higher hydrophobicity. In contrast, the side chain
of asparagine in position 5 of N1 is repelled out of the D
pocket because of the hydrophilicity of the asparagine. Excep-
tional intrachain hydrogen bonds and under-the-chain water
molecules contribute to stabilize the conformation of the cen-
tral region.

The newly identified peptide N1 (QFKDNVILL), which acts
as a dominant epitope located in one of the immunogenic
regions, residues 331 to 365 of N protein, could be used as a
representative CTL antigen for detection of SARS-CoV-spe-
cific CTL epitope-stimulated response within the HLA-A24™"
donors recovered from SARS. In addition, it might be a can-
didate reagent for peptide vaccine development. The novel
structure of HLA-A*2402 together with a pathogen-derived
peptide in a higher resolution may expand our understanding
of the peptide binding properties of HLA-A24 molecules and
the strategy of the host to present immunodominant epitopes.
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