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Multiple myeloma (MM) is a malignant plasma cell neoplasm that accounts for slightly more

than 10% of all hematologic cancers and remains incurable. The major challenge remains the

identification of better diagnosis and prognostic biomarkers. The advent of proteomic tech-

nologies creates new opportunities and challenges for those seeking to gain greater under-

standing of MM. Although there is a limited number of proteomic studies to date in MM,

those performed highlight the potential impact of these technologies in our understanding of

MM pathogenesis and the identification of novel therapeutic targets. In this review, we

introduce the proteomic technologies available for the study of MM, summarize results of the

published proteomic studies on MM, and discuss the novel developments and applications

for the analysis of protein PTM in MM. The application of proteomic technologies will be

valuable to better understand the pathogenesis of MM and may in the future open novel

avenues in the treatment of MM.
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1 Introduction

Multiple myeloma (MM) is a malignant neoplasm origi-

nating in plasma cells. MM causes about 1% of neoplastic

diseases and 13% of hematological malignancies in the USA

[1]. The incidence varies globally from 1 per 100 000 people

in China, to about 4 per 100 000 people in most developed

countries [1].

MM is a currently incurable malignancy and the etiology

of MM remains unknown [2]. A multistep development

model suggests that monoclonal gammopathy of unde-

termined clinical significance (MGUS) might become

smouldering MM, and ultimately symptomatic intrame-

dullary and extramedullary MM, or plasma cell leukemia [3].

The bone marrow (BM) microenvironment plays a critical

role in enhancing tumor cell growth, survival, migration,

and drug resistance [4]. MM cells home to the BM and

adhere to extracellular matrix proteins and to BM stromal

cells, which not only localizes tumor cells in the BM milieu

but also has important functional sequelae [5]. Although

gene expression profiling has provided novel insights into

the understanding the pathogenesis of MM, ultimately
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protein expression and mutual interaction between PCs and

BM microenvironment determine MM formation. Global

gene expression profiling shows that few differences exist

between MGUS and MM [6], which underscores the

essential role of protein expression and BM microenviron-

ment in development, maintenance, and progression of

MM. Thus, proteomic analysis of MM complements and

extends the genomic findings [7–10]. In addition, proteo-

mics can be utilized to study PTMs and protein–protein

interactions, which may determine MM formation [11].

Various proteomic methodologies have been established

for the analyses of protein expression and PTMs, quantita-

tive characterization of protein mixtures, protein–protein

interactions, and disease management [12–14]. A list of

publications on proteomic studies of MM is summarized in

Table 1. It should be noted that the application of proteomic

approaches in MM is relatively new, but growing rapidly.

This review will introduce the currently available proteomic

technologies and discuss their contributions to under-

standing MM pathogenesis and therapy.

2 Proteomic approaches

Over the past decade, a number of proteomic platforms have

been developed or perfected for the purposes ranging from

studying protein–protein interactions and PTMs to protein

detection and quantitation [13, 15, 16]. Proteomic analysis is

achieved by a combination of techniques that are designed

to profile, quantitate, and identify proteins or peptides.

Figure 1 shows various proteomic methodologies that have

the potential to be applied in MM research. Importantly,

each of these technologies has distinct advantages, disad-

vantages, and limitations and the proteomic technologies

described below should be considered as complementary

tools.

2-DE is an approach in which mixtures of proteins are

separated based on mass and charge. When combined MS

and advanced image analysis software, 2-DE can be used for

protein separation, relative quantification of protein

expression, and identification of protein isoforms and PTMs

[17, 18]. As an improvement, 2-D DIGE overcomes the

problems associated with traditional 2-DE and allows more

accurate and sensitive quantitative proteomic studies

[19–21]. Though 2-DE or DIGE has its advantages and

disadvantages, there is no doubt that it will remain as an

essential technique for the characterization of proteomes for

many years to come.

iTRAQ has been established as a comprehensive

and efficient method for proteomic quantification [22, 23].

The method was first developed by Ross et al. [24] and

was subsequently commercialized by Applied Biosystems.

This potential benefit – to identify and quantify low-abun-

dance proteins in complex samples – coupled with the

ability to multiplex up to eight samples in parallel suggests

that iTRAQ holds the most promise for biomarker discovery

[25].

Stable-isotope labeling by amino acids in cell culture is a

differential proteomic technique based on mass spectrum

and has become a common technique in quantitative

proteomics [26]. Stable-isotope labeling by amino acids in

cell culture has the advantages of a predictable mass shift

and the incorporation of the tags during cell growth, prior to

sample preparation, with a consequent minimization of

potential biases due to separate handling of the samples [27].

This versatile strategy has been applied successfully to study

a large variety of biological systems and has resulted in

many important discoveries [28–30].

Table 1. Summary table of publications on proteomic studies of MM

Materials Technique Comments References

Serum SELDI-TOF/MS Analysis of SELDI-TOF/MS data of myeloma-associated lytic
bone disease

Hong et al. [76]

Serum MALDI-TOF/MS Construction of a MM diagnostic model Wang et al. [77]
BM 2-DE Comparative proteomic analysis of primary MM cells Xiao et al. [78]
MM cell

lines
2-DE Proteomic evaluation of dexamethasone-mediated

apoptosis in MM cells
Rees-Unwin et al.

[79]
MM cell

lines
2-DE Functional proteomic study of mechanism of ATO on MM

cells
Ge et al. [80]

MM cell
lines

Protein array Proteomic analysis of the signaling state of bortezomib-
treated MM cells

Mitsiades et al.
[81]

MM cell
lines

Label-free quantitation/
phosphoproteomics

Phosphotyrosine proteomic profile of MM cells St-Germain et al.
[83]

MM cell
lines

SRM/phosphoproteomics Measurement of protein phosphorylation stoichiometry in
MM cells

Jin et al. [43]

BM TiO2 enrichment/
phosphoproteomics

Phosphoproteomic analysis of primary MM cells Ge et al. [88]

Serum LC/MS Identification of potential bortezomib-response markers in
MM patients

Hsieh et al. [82]
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Proteolytic 18O labeling is a technique where proteolytic

labeling and stable isotope incorporation occurs simulta-

neously during digestion [31, 32]. In addition to comparative

quantitation [31–33], this method has also been used to

provide labeled peptides for absolute quantitation [34],

discover disease-specific biomarkers [35–37], quantify the

N-glycosylation site occupancy [38], and identify changes

in phosphorylation [39]. With continued advances in soft-

ware and instrumentation, the 18O2-labeling method

promises increased the applications for large-scale proteo-

mic applications.

Selected reaction monitoring (SRM, also known as

multiple reaction monitoring) is a new promising approach

that does not use labeling and stable isotopes to obtain

quantitative information [40]. SRM is an MS technique for

the targeted detection and quantification of selected

proteotypic peptides with known fragmentation properties

in a complex sample matrix by using a new generation mass

spectrometers such as triple quadrupole MS [40, 41]. It has

the unique feature to quantify multiple proteins in one

analysis with high reproducibility [42]. Especially, this

approach has proved particularly successful for protein

modification profiling, such as phosphorylation and glyco-

sylation [43]. In particular, the Human Proteome Detection

and Quantitation Project has suggested that SRM with triple

quadrupole LC-MS/MS should be the main platform to be

used to detect and quantify the 21 500 human proteins in

blood in the nanogram per milliliter range [44]. Therefore,

this technique will have a crucial impact on the clinical data

validation at the protein level in the future.

SELDI-TOF MS was introduced as a variation on the

MALDI concept and holds the promise for biofluid clinical

proteomics [45–47]. Lots of applications using SELDI-TOF

MS were published for diagnostic of cancers [48–52]. Other

recent articles concerning protein–protein interactions [53],

phosphorylated, and glycosylated proteins [54] also demon-

strated the great potential of the technique. In addition,

improvements in MS instrumental performances and

standardized procedures could be expected, contributing

further to more reliable and faster biomarkers discovery.

Protein arrays, also known as protein chips, are minia-

turized, parallel assay systems that contain small amounts

of purified proteins in a high-density format [55, 56]. They

allow the simultaneous determination of a variety of

analytes from small amounts of samples in a single

experiment. The major breakthrough came from a report by

Zhu et al. in which a proteome wide protein array consisted

of 5800 unique yeast proteins on a modified microscopic

slide that bears all adjectives of a protein array was fabri-

cated and applied to identify calmodulin- and phospholipid-

binding proteins [56]. Protein microarray technology has

been shown to be a useful tool for multiplexed detection and

proteomic studies. Novel applications utilizing protein

microarrays and new protein microarray technologies

are continually emerging, especially for disease-related

biomarker study.

PTMs of proteins control many biological processes, and

examining their diversity is critical for understanding

mechanisms of cell regulation. Due to their key functions in

cellular processes, PTMs have aroused lots interest [57].

Altered levels of PTMs, sometimes in the absence of protein

expression changes, are often linked to cellular responses

and disease states. Therefore, the comprehensive analysis of

the cellular proteome would not be complete without the

identification and quantification of the extent of PTMs

of the individual proteins [58]. Among more than 300

different types of PTMs, phosphorylation is one of the

best-characterized modifications [59]. Protein phosphory-

lation–dephosphorylation events play a primordial role in

cell functions. Characterization of phosphorylation status is

critical to the elucidation of signal transduction pathways

and to the understanding of the mechanisms of disease and

drug actions [60, 61]. Phosphoproteomics usually refers to a

large-scale analysis of protein phosphorylation using MS-

based strategies [62–64]. Recent successes in this area owe

much to the development of MS instrumentation such as

Figure 1. Schematic representation of

various proteomic approaches available to

study MM. SILAC, stable-isotope labeling by

amino acids in cell culture; SRM, selected

reaction monitoring; and MRM, multiple

reaction monitoring.
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the linear ion trap and the Orbitrap, as well as novel phos-

phoprotein/peptide enrichment techniques [65–67]. Given

the extensive alterations of the ERK [68], jun kinase [69],

STAT [70], and AKT kinase [71] signaling cascades in MM

cells, phosphoproteomics is critical to the elucidation of

signal transduction pathways and the understanding of MM

pathogenesis.

3 Proteomic applications to MM research

3.1 Proteomic analysis of clinical samples

Currently, MM is still an incurable plasma cell malignancy

and frequently associated with poor prognosis. It usually

evolves from an asymptomatic premalignant stage known as

MGUS [72]. MGUS develops into MM or related malignancy

at a rate of 1% per year [72]. There are no unequivocal

biomarkers that distinguish MGUS from MM tumor cells,

and hence it is not possible to predict if and when MGUS

will progress to MM. Therefore, it is important to identify

biomarkers that can distinguish MGUS from MM.

In addition to finding the biomarkers that can predict if

and when MGUS will progress to MM, it is also important

to identify biomarkers for diagnostic and/or prognostic

purposes. A diagnosis of MM is established using blood and

urine tests. Staging with serum calcium, creatinine, hemo-

globin, and most importantly the concentration of the

‘‘monoclonal serum protein’’ was established in 1975 by

Durie and Salmon [73]. The International Staging System

determined in 2005 uses those markers as well as serum

albumin and b2-microglobulin [74]. Recently, a quantitative

MS assay for monoclonal proteins is developed and assessed

for its value in monitoring MM progression and relapse [75].

The implementation of this single quantitative test could

offer advantages over the qualitative tests currently used to

follow MM patients.

Hong et al. [76] developed a method for assessing the

quality of SELDI-TOF data based on a correlation matrix.

The correlation matrix approach was applied to the MM-

associated lytic bone disease study to efficiently identify low-

quality spectra prior to postanalysis. The results demon-

strated the potential application of this method in the

identification of biomarkers for myeloma associated lytic

bone disease. Recently, Wang et al. used proteomic finger-

print technology combining magnetic beads with MALDI-

TOF MS to analyze MM sera to determine whether there are

distinct and reproducible protein fingerprints potentially

applicable for the diagnosis of MM [77]. Serum samples

from 54 MM patients and 108 non-MM donors were tested

and a panel of three biomarkers was identified. The results

demonstrated that the biomarker classification model based

on this technology was suitable for preliminary assessment

of MM and could potentially serve as a useful tool for MM

diagnosis. More recently, our group used 2-DE to compare

the proteomes of purified MM and normal plasma cells [78].

Anti-CD138-based immunomagnetic bead-positive selection

was performed to purify plasma cells from patients and

healthy donors. A total of 43 differentially expressed

proteins were identified. Furthermore, we showed that

annexin A1 are involved in the effects of dexamethasone in

MM cells and could represent a novel potential therapeutic

target. These findings we reported may improve the

understanding of the pathogenesis of MM and form the

basis for the development of novel potential therapeutic

targets.

3.2 Proteomic studies of mechanisms of drug action

and drug resistance

The use of proteomic tools to investigate the effects of drug

treatment on cell lines can provide relevant information

regarding the mechanisms behind its efficacy; it can also

give insights into the modifications that accompany drug

resistance. For instance, one study used the classical 2-DE to

identify the dysregulated proteins, following dexamethasone

treatment in MM cells [79]. The authors identified a total of

18 dysregulated proteins in response to dexamethasone

treatment. The data revealed significant upregulation of FK

binding protein 5, following dexamethasone treatment in

dexamethasone-sensitive cell line but did not change in

intensity in dexamethasone resistant cell line, showing a

possible involvement of this protein in the mechanism of

resistance. This information is important since the spec-

trum of use of the drug might be widened by the knowledge

of the mechanism of resistance.

The use of arsenic trioxide (ATO) in MM is a promising

targeted therapy. Recently, our group [80] have investigated

the effects of the ATO on the MM cell line U266 using a

combination of 2-DE, RNAi, flow cytometry, and Western

blotting. Several clusters of proteins altered in expression in

U266 cells upon ATO treatment were identified, including

downregulated signal transduction proteins and ubiquitin/

proteasome members, and upregulated immunity and

defense proteins. The in-depth functional studies suggested

a pivotal role for the 14-3-3z in ATO-induced apoptosis.

These findings implicate 14-3-3z as a potential molecular

target for drug intervention of MM and thus improve our

understanding on the mechanisms of antitumor activity of

ATO.

The proteasome inhibitor bortezomib represents an

important advance in the MM treatment. To elucidate the

mechanism of apoptosis induced by bortezomib, Anderson

group performed proteomic analysis of myeloma cells trea-

ted with bortezomib versus control cells by using multiplex

immunoblotting arrays [81]. The authors demonstrated that

in addition to downregulating the expression of anti-

apoptotic proteins, bortezomib inhibits genotoxic stress-

response pathways. These studies, therefore, provide the

framework for clinical use of this agent in combination with

conventional chemotherapy. To identify possible early
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biomarkers of the bortezomib response in MM patients,

Hsieh et al. demonstrated that the plasma levels of apoli-

poprotein C-I (apoC-I) and apoC-I0 increased in MM patients

who responded to bortezomib therapy [82]. The results

suggest that apoC-I and apoC-I0 may be two potential early

biomarkers of the bortezomib response in MM patients.

However, before apoC-I and apoC-I0 can be used for clinical

applications as biomarkers of bortezomib response in MM

patients, the functional relationship between these proteins

and bortezomib response must be established.

3.3 Phosphoproteomic studies of MM

So far, three studies have used a phosphoproteomic

approach to investigate MM. The research article by Moran

and colleagues [83] can be considered the father of phos-

phoproteomic study on MM. In this study, label-free quan-

titative phosphoproteomic method was used to identify and

quantify phosphotyrosine (pY) sites modulated by fibroblast

growth factor receptor 3 (FGFR3) activation and inhibition

in MM cells. FGFR3 is a receptor tyrosine kinase and

interacts with various signaling pathways including MAPK

and PI3K [84]. Activation of FGFR3 has been associated with

the pathogenesis and chemoresistance of MM [85].

However, the FGFR3 signaling pathways in MM remain to

be fully understood. The results presented in this study

provide novel insight into the function of FGFR3 in MM

cells and constitute an outline of the FGFR3 network in the

myeloma model. Importantly, this study also demonstrated

the potential utility of pY-directed phosphoproteomics to

measure drug pharmacodynamics since it provided a

measure of drug-target modulation and insight into drug

mechanisms.

Lyn kinase is the predominant src family kinase in

B cells and is reported to play a key role in the growth and

apoptotic regulation of hematopoietic cells and their

malignancies including MM [86]. It has been reported that

phosphorylation of Lyn kinase is associated with mechan-

istically defined effects on Lyn activity [86, 87]. By using a

more elegant approach, the same group [43] demonstrated

that the phosphorylation stoichiometries of two phosphory-

lation sites on Lyn kinase could be determined in human

MM-derived cell lines and xenograft tumors. Their method,

based on the combination of high resolution FTMS and

SRM with label-free quantification, allowed for the quanti-

fication of relative phosphorylation stoichiometries at less

than 1% and over a range of at least two orders of

magnitude. With their label-free approach, more accurate

information about the signaling pathways in normal and

diseased tissue may be retrieved and compared.

Importantly, their method may have general utility for

phosphoproteomic studies including the measurement of

signaling pathways in clinical samples and preclinical

models.

Recently, our group has attempted the phosphopro-

teomic analysis of primary human MM cells [88]. In this

study, we used a separation strategy involving immuno-

magnetic bead-positive selection of MM cells, preparative

SDS-PAGE for prefractionation, in-gel digestion with tryp-

sin, and titanium dioxide (TiO2) enrichment of phospho-

peptides, followed by LC-MS/MS analysis employing a

hybrid LTQ-Orbitrap mass spectrometer. This analysis led to

the identification of 530 phosphorylation sites from 325

unique phosphopeptides corresponding to 260 proteins.

This data set provides an important resource for future

studies on phosphorylation and carcinogenesis analysis of

MM.

4 Concluding remarks and outlook

This review aims to summarize the emerging impact of

proteomics in MM research. There are two main expecta-

tions from proteomic analysis of MM. The first is to discover

new molecular targets associated with different stages of

MM development. The second is to decipher the molecular

mechanisms and signaling events that lead to MM devel-

opment. Currently, the application of proteomics to MM is

at a very early stage, and without subsequent downstream

analyses, proteomic experiments merely provide lists of

protein data with little practical value. Proteomics is a

rapidly developing science and anticipated to be very useful

to improve our understanding of the MM pathogenesis,

develop novel anti-MM therapeutic strategies, and discover

novel MM biomarkers.

In the future, the use of SELDI-based techniques, for the

identification of biomarkers, has the potential to forge a

rapid diagnostic test for either the preclinical or the early

stages of malignant change. In parallel, the further devel-

opment of protein chip-based technologies highlights how a

technology can be adapted for rapid large-scale analysis

applicable in the clinical trial setting. This technology is still

being developed to increase sensitivity, reproducibility, and

depth of coverage, but where the investigator has prior

knowledge of the proteins that need to be quantified from a

sample, they provide a good alternative to more stochastic

screening approaches such as 2-DE or MS. Newer genera-

tion mass spectrometers as well as emerging quantitative

approaches such as iTRAQ and SRM will also provide

enhanced sensitivity and accuracy for the detection and

quantification of proteins in MM clinical samples. Espe-

cially, the promise of phosphoproteomics will revolutionize

our understanding of the MM pathogenesis. It could be

foreseen that proteomic technologies will eventually

improve treatment and outcome of patients with MM.
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