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Figure 6. Schematic diagram of severe acute respiratory syndrome
coronavirus (SARS-CoV) membrane (M) protein on the virion envelope,
addressing the immune epitopes. The M protein comprises a domain
spanning a triple membrane of�80 amino acid residues, a short N-
terminus protruding out of the membrane, and a long cytoplasmic C-
terminus. Md3 (green) and Mn2 (yellow) are completely included in the
second and the third transmembrane domain, respectively. The identiÞed
B cell epitopes that could be recognized by antibodies are also represented
in the diagram (cyan). The predicted structure of the M protein is based
on previous studies [48].

tures, Mn2 and Md3 lie in the grooves formed by HLA heavy

chains in a similar conformation, with 2 anchor residues in-

serting deep into the binding pockets, as seen in other typical

HLA-A*0201–restricted epitopes. The analysis of the 2 struc-

tures not only confirms that Mn2 and Md3 possess structural

properties typical of HLA-A*0201–restricted epitopes but also

determines that they are minimal stimulatory peptides, because

both use the C-terminal residue to anchor in pocket F of the

heavy chain.

Furthermore, we have analyzed the immunogenic features

of a panel of Mn2 and Md3 derived peptides (which means 1

amino acid deletion or addition around the defined epitopes)

to see whether these regions are T cell epitope hot spots (un-

published data). Indeed, they could induce CD8+ T cell reaction

from the transgenic mice inoculated with pD3-M. The crys-

tal structure of the HLA-A2 complexed to peptide Md3-C9

(LACFVLAAV), equivalent to 9 residues in the C-terminal of

Md3, revealed a distinct conformation of the peptide, which may

demonstrate that this peptide acts as a new epitope in a different

way with Md3 (nonamer versus decamer epitopes). All of these

assays may reveal that the transmembrane domain of M protein

contains a T cell epitope cluster that contributes significantly

to the M protein–specific cellular immunity.

In general, protective memory immunity could be detected

for a long period after the onset of viral diseases. Unfortunately,

it has been reported that the geometric mean reciprocal titers

of SARS-CoV–specific immunoglobulin G and neutralizing an-

tibodies dropped significantly to a very low level in the 30th

month after infection and were even undetectable in some pro-

portion of the samples [46]. However, studies of the cellular

immune response demonstrated that memory CD8+ T cells

could be detectable from recovered donors years after the onset

of the disease [21, 24, 47]. Long-term existence of cellular im-

munity was also observed in the studies of the SARS-CoV N

protein–specific immunity [47]. In this study, CD8+ T cells

against the M protein (as shown with peptides Mn2 and Md3)

and against the S protein (as shown with peptide P15) [34]

still existed in the PBMCs of recovered donors 20 months af-

ter infection.

In conclusion, this study has successfully identified a novel

and defined CTL epitope clustering region containing 2 novel

HLA-A*0201–restricted, immunogenic CTL epitopes from the

M protein (Figure 6). Taking the earlier reports into account

that the M protein induces strong neutralizing antibodies [18,

30, 48], we propose that the M protein could be a good can-

didate antigen for a prophylactic vaccine inducing both dom-

inant cellular and humoral immunogenicity. Our current and

previous studies [34, 49] also indicate that the combination of

bioinformatics, cell biology, mouse model, and structural bi-

ology is a good method to evaluate the CTL epitope–specific

immune response.
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