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a b s t r a c t

Previous elegant experiments in a flight simulator showed that conditioned Drosophila is able to make a
clear-cut decision to avoid potential danger. When confronted with conflicting visual cues, the relative
saliency of two competing cues is found to be a sensory ruler for flies to judge which cue should be used
for decision-making. Further genetic manipulations and immunohistological analysis revealed that the
dopamine system and mushroom bodies are indispensable for such a clear-cut or nonlinear decision.
The neural circuit mechanism, however, is far from being clear. In this paper, we adopt a computational
modeling approach to investigate how different brain areas and the dopamine system work together to
drive a fly to make a decision. By developing a systems-level neural network, a two-pathway circuit is
proposed. Besides a direct pathway from a feature binding area to the motor center, another connects
two areas via the mushroom body, a target of dopamine release. A raised dopamine level is hypothesized
to be induced by complex choice tasks and to enhance lateral inhibition and steepen the units’ response
gain in the mushroom body. Simulations show that training helps to assign values to formerly neutral
features. For a circuit model with a blocked mushroom body, the direct pathway passes all alternatives
to the motor center without changing original values, giving rise to a simple choice characterized by a
linear choice curve. With respect to an intact circuit, enhanced lateral inhibition dependent on dopamine
critically promotes competition between alternatives, turning the linear- into nonlinear choice behavior.
Results account well for experimental data, supporting the reasonableness of model working hypotheses.
Several testable predictions are made for future studies.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Decision-making is a capability crucial for the animals’
existence. In everyday life humans and animals need to make
decision almost all the time on things ranging from food taste
to political opinion. The fruit fly Drosophila melanogaster, without
exception, is able to make a decision. Examples range from
simple selections in females toward egg-laying sites (Yang,
Belawat, Hafen, Jan, & Jan, 2008) to saliency-based decision-
makingwhen confrontedwith conflicting cues in a flight simulator
(Tang & Guo, 2001; Zhang, Guo, Peng, Xi, & Guo, 2007). The
latter occurs only among flies experienced in prior training,
during which they learned to turn aside from a certain visual
pattern to avoid heat punishment. Facing an upper-blue bar,
for instance, is always accompanied with heat punishment,
whereas it is safe if flight directions are towards a lower-green
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bar. Conditioned flies prefer the lower-green bar even if the
heat punishment is shut down, showing that an association
memory is established. To find out whether the flies have the
ability to make a choice, a new paradigm different from classic
memory tasks was developed, in which flies were confronted
with conflicting cues (Tang & Guo, 2001; Zhang et al., 2007). The
paradigmpresents to flies a pair of barswith their colors exchanged
and vertical separation decreased compared with that used for
training (Zhang et al., 2007). And heat punishment is removed. The
vertical separation between the bars’ centers of gravity quantifies
the position saliency of the two bars and is denoted as 1COG. In
such adesign safety anddanger cues aremixed together.Which bar
should be followed to avoid potential danger? Apparently a good
memory alone is not enough to resolve the dilemma. Something
like ‘‘intelligence’’ is urgently needed.

Surprisingly wild-typeDrosophila canmake a clear-cut decision
by taking a salience-based strategy (Guo, Zhang, Peng, & Xi, 2009,
2010; Tang & Guo, 2001; Zhang et al., 2007). Specifically, if 1COG
is close to 60° as learned, flies rapidly turn towards the lower-blue
bar (Zhang et al., 2007). It is a choice according to the saliency of
position but not color cue. Otherwise, if1COG is close to 0°, color is
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treated as a cuemuchmore salient than position. Flies select to face
the upper-green bar. A sigmoid regression curve was found to fit
the function between 1COG and choice preference index (PI) very
well, which defines a choice curve. This clear-cut decision behavior
is called nonlinear choice.

Taking advantage of a genetically tractable system, it was
further revealed that flies with a defective mushroom body (MB)
or with dopaminergic projection to the MB blocked show a linear
but not nonlinear choice behavior (Tang & Guo, 2001; Zhang
et al., 2007). A linear choice means that the choice PI is linearly
proportional to 1COG if the task is repeated with a varied 1COG
in the range (0°, 60°). The PI measures the difference in the
percentage of time spent following the position or color cue.
Nonlinear choice is characterized by a rapid clear-cut decision,
and flies seldom turn back towards the non-selective target once
a decision is made. By contrast, PIs are substantially reduced
in the simple linear choice, in which flies seem hesitant and
have difficulty in deciding which bar to follow. Data show that
the dopamine-MB circuit is not necessary for linear choice but
remarkably involved in nonlinear choice (Zhang et al., 2007).

The result is nontrivial if we notice the similarities in decision-
making between primates and Drosophila. Dopamine is an impor-
tant neurotransmitter or neuromodulator for both mammals and
insects. In higher mammals the midbrain dopaminergic system
contributes to value-based decisions, at least through its role in re-
ward valuation and prediction (Montague, Hyman, & Cohen, 2004;
Rangel, Camerer, &Montague, 2008; Sugrue, Corrado, & Newsome,
2005). In the regulation of behavioral activity, the MB is simi-
lar to the prefrontal cortex to some extent (Heisenberg, 2003).
The prefrontal and parietal association cortices, for instance, are
the location for decision making by linking rewards to behav-
ioral responses (Kepecs, Uchida, Zariwala, & Mainen, 2008; Sug-
rue et al., 2005), and a comparable role might be played by the MB
in Drosophila (Tang & Guo, 2001; Zhang et al., 2007). The compar-
ison prompts us to think that the neural mechanism underlying
decision-making might be highly conserved from insects to pri-
mates. Elucidating how a decision emerges in flies, whose neural
circuit is much simpler than that of primates, is undoubtedly help-
ful in understanding the general choice mechanism.

However, it is so far difficult to address the problem by
conventional methods such as electrophysiological recordings,
although quite a few studies have now recorded single cells
(Turner, Bazhenov, & Laurent, 2008) or a local field potential (Nitz,
van Swinderen, Tononi, & Greenspan, 2002) in Drosophila. The
limitation is in sharp contrast to the virtues of Drosophila as a
model for systems neuroscience. In this study we adopt a network
modeling approach to simulate the decision-making circuit.
By constructing a systems-level network model with multiple
modules, the neurocomputational mechanisms underlying an
experience-dependent formation of value, the modulation role of
dopamine in the transformation between linear and nonlinear
decisions, and etc. are elucidated. Computer simulations account
for data observed by Zhang et al. (2007), and the model makes
several testable predictions for future experimental studies.

2. Methods

2.1. Anatomical organization of decision-making circuit

While identifying brain areas involved in making a decision
is a big challenge, new tools for detecting neural activity in
the fly have been greatly developed recently (Olsen & Wilson,
2008). By gathering and organizing relevant data below, we
argue for a multiple-module circuit. It consists of structures
that specifically serve feature detecting, feature binding, danger
detecting, and decision-making, respectively (Fig. 1(A)). Note that
A

B

Fig. 1. Network model for decision-making task in Drosophila. (A) Schematic
model architecture. Input to binding module is gated by attention (dot–dashed
line). Hatched boxes mark two recognized visual bars with different colors in
the binding area. The MB is the only target of dopamine release (filled arrow).
The transformation from a decision to an action (dashed lines) is not simulated.
(B) Multiple-module network extracted from (A). From B- to D-module the feed-
forward projection is plastic (broken arrow) and the feedback connection is
inhibitory (solid circle).

the transformation of a decision into a motor center is not
considered here.

As a first step of visual information processing, five pattern
features including color, size, and vertical position or elevation in
the panorama can be recognized in Drosophila (Dill & Heisenberg,
1995; Ernst & Heisenberg, 1999; Tang, Wolf, Xu, & Heisenberg,
2004). A number of classes of neurons respond specifically to small
moving targets in the third optic ganglion of several species of flies
(Egelhaaf, 1985; Gilbert & Strausfeld, 1992; Nordstrom, Barnett,
& O’Carroll, 2006). With respect to color processing, two types of
columnar neurons downstream of the chromatic channels R7 and
R8 are recently identified in themedulla inDrosophila, which could
function as color opponent cells (Gao et al., 2008). These evidences
support that the optic lobe or the visual periphery houses position
and color detectors, as labeled in the top of Fig. 1(A), though their
exact anatomical location remains unknown.

Flies recognize a composite pattern as a whole by combining
multiple features (Tang et al., 2004). Feature bindingwas proposed
to occur in a sensory-motor center of the central brain (Tang
et al., 2004), though the circuit connecting feature detectors with
the higher visual center is largely unclear so far. In our model
the module for feature binding is labeled as ‘area unknown’ to
keep objectivity (Fig. 1(A)). It should be noted that although a
previous artificial network proposed a robust function of theMBon
visual recognition in insects (Huerta & Nowotny, 2009), no direct
projection from optical lobes to the MB is found in Drosophila yet.
In fact flies without MBs are quite normal in visual and motor
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learning (Heisenberg, 2003), which evidences that the feature
binding module cannot be replaced by the MB.

Feature binding area in the model is hypothesized to be the
first place for forming a simple decision, where the competition
among potential choices is biased by visual memory. Associative
memory is established during training by linking a particular set
of values of position and color to heat punishment. Considering
that short-term memory for position feature is stored in the fan-
shaped body (Liu et al., 2006), our model tentatively assumes
that the anatomical substrate for memory-based biasing or danger
detecting corresponds to the central complex (Fig. 1(A)). By
‘tentatively’ it means that we indeed note that the exact location
of color memory is unclear as yet.

A key point of themodel lies in whether the simple choice is fed
forwards to the motor center by one pathway or not. The toolset
offered by Drosophila genetic revealed two distinct pathways in
all probability (Zhang et al., 2007). In flies with disrupted MB or
blocked dopaminergic projections to the MB a clear-cut choice is
impossible, but a linear choice behavior remains. The data indicate
that the MB is not needed for simple linear choice (Zhang et al.,
2007). Sparked by these evidences, our model argues for a two-
pathway circuit from binding area to motor center, as shown in
Fig. 1(A). The direct pathway is a default setting, while the second
one via the MB is activated only when confronted with complex
tasks. There are eight different morphological classes of dopamine
neurons innervating the MB in Drosophila (Mao & Davis, 2009).
The second pathway via the MB should be seriously modulated by
dopamine.

2.2. Working hypotheses

We propose the following hypotheses on the circuit model for
decision-making in Drosophila:

(1) Visual selective attention controls what specific cues enter the
feature binding area at a particular moment.

(2) There is a topographic spatial map connecting five modules of
the circuit. The application of an unconditioned stimulus (US)
of heat punishment is also topographic.

(3) A decision is first formed in the binding area, where the choice
process is strongly biased by feature-dependent memory. It
underlies the simple decision behavior characterized by a
linear choice curve.

(4) The circuit features two pathways from the binding area to
the motor center. One is direct way as a default setting, while
another passes through the MB and is switched on only when
a complex task calls.

(5) In the face of a complex choice task, the ambiguous/conflicting
visual cues elicit a phasic response of dopaminergic neurons
projecting to the MB, resulting in a transient increase in
dopamine levels in the MB.

(6) Phasic dopamine modulates the neuronal dynamics of the MB,
leading to a rapid amplification of the slight difference between
two potential choices. It makes the onewith a slightly stronger
value win the competition finally.

Selective attention was proposed for Drosophila visual orienta-
tion (Heisenberg & Wolf, 1984). Attention-like fixation or track-
ing behavior induced by visual targets at a flight simulator was
reported in fruit flies (Heisenberg, Wolf, & Brembs, 2001; van
Swinderen, 2005;Wu, Gong, Feng, & Guo, 2000). These studies un-
derlie hypothesis (1). As is well known, there is a topographic map
of odor quality in the antennal lobe in the Drosophila brain. The
motion-sensitive large-field neurons in the lobula plate have dis-
tinct receptive fields that are orderlymapped (Joesch, Plett, Borst, &
Reiff, 2008), showing a topographic spatial map for visual motion
detection in the optic lobe of Drosophila. Hypothesis (2) is based
on such findings, although it is still unclear whether neighboring
points in a visual image evoke activity in neighboring neurons of
central brain areas like the MB. In this manner, the model circuit
maintains the information of spatial locations of stimuli.

The reasonableness of hypotheses (3) and (4) has beendefended
by reviewing relevant evidences in Section 2.1. Hypotheses (5)
and (6) suggest a critical role of the dopaminergic-MB circuit
in the competition between two potential choices. While the
involvement of this circuit in nonlinear decision-making is
supported by Tang andGuo (2001) and Zhang et al. (2007),we need
to discuss how a modulation role of dopamine is achieved.

Eight different morphological classes of dopamine neurons in-
nervate the MB in Drosophila, and most of which project to the MB
lobes (Mao & Davis, 2009). To our knowledge, there is to date no
report about how the dopamine concentration in the MB is mod-
ulated by a conditioned stimulus (CS). The most relevant study
showed that when CS odor is presented after aversive condition-
ing, the duration of the activities of dopaminergic neurons is pro-
longed, suggesting a US-predicting role of dopaminergic neurons
(Riemensperger, Voeller, Stock, Buchner, & Fiala, 2005).

In mammals, midbrain dopaminergic neurons exhibit phasic
responses to a wide type of unexpected biologically significant
events including sudden novel stimuli, intense sensory stimuli,
motivating stimuli, primary rewards and arbitrary stimuli similar
to those classically conditioned by association with primary
rewards (Redgrave &Gurney, 2006; Schultz, 2007). Such responses
show short latency (70–100 ms) and short duration (<200 ms).
Moreover dopaminergic neurons show a sustained increase in
activity that grows from the onset of the reward uncertainty-
predicting stimulus (Fiorillo, Tobler, & Schultz, 2003). Considering
that the dopamine function in predicting a reinforcing stimulus
is partially conserved in insects (Riemensperger et al., 2005), we
propose in hypothesis (5) that dopaminergic neurons may also
show increased response to reinforcer uncertainty in Drosophila.
In Zhang et al. (2007) reinforcer uncertainty is generated due
to a mixing of visual cues predicting punishment and safety
respectively. To flies, the conflicting cues could mean anything:
totally novel stimuli different from the learned one or punishment
reinforcer uncertainty. Such conflicting cues could induce an
increase in dopaminergic neurons’ activities and subsequently
result in elevated dopamine levels in the MB, according to
hypothesis (5).

Hypothesis (6) proposes a computational role of dopamine in
the target MB. It is unclear yet whether dopaminergic neurons
communicate by volume transmission (Fuxe et al., 2009) or only by
localized activity of specific synapses in Drosophila. And currently
little is known about the functional properties of dopamine
receptors in the Drosophila central nervous system. However, both
D1 and D2 dopamine receptors together with receptor targets are
well-conserved in Drosophila and especially highly enriched in the
MB neuropil (Han, Millar, Grotewiel, & Davis, 1996; Hearn et al.,
2002; Kim, Lee, Seong, & Han, 2003). We thus base hypothesis
(6) on the better known properties of dopamine modulation in
some mammals (Cohen, Braver, & Brown, 2002; Nicola, Surmeier,
& Malenka, 2000). The specific dopamine modulation on MB cells
is described in detail in Section 2.4.4.

2.3. Overall network architecture

We try to develop a minimal network model at a systems-
level required to account for decision-making in Drosophila.
This network is not intended to simulate neural activity at a
neurophysiological level or to capture data on individual fly
brain areas, cell types, but it aims at explaining and predicting
the systems and behavioral level phenomena. The mathematical
equations used significantly simplify the operations that may
actually take place in the nervous system.
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The whole network consists of five modules (Fig. 1(B)), respon-
sible for position feature detecting (P-module), color feature de-
tecting (C-module), feature binding (B-module), danger detecting
(D-module), and decision-making (M-module), respectively. Note
the transformation of neural activities into motor commands is
omitted in the model. All modules comprise N neuron units ar-
ranged in a line except the C-module that includes two units en-
coding blue and green color, respectively, for simplification. The
connections betweenmodules are hardwired and feed-forward ex-
cept that between B- andD-modules. TheD-module detects danger
by receiving heat punishment US. The connection weights from B-
to D-modules are endowed with synaptic plasticity during train-
ing, although it is currently unclearwhere the visual CS and heat US
actually meet in the insect brain. D-module consists of inhibitory
units, which have a faster time constant than those of other mod-
ules. It gives a rapid inhibitory feedback to the unit group in B-
module encoding the visual bar with conditioned danger feature.

The dynamics of individual units are governed by a firing rate
model as follows:

τMo dV
Mo
i

dt
= −VMo

i + EMo
i − IMo

i + Θ(0, η), (1)

where VMo
i is the activity of the ith unit of a given module Mo

and τMo is the time constant. The module superscript Mo will be
replaced below by P, C, B,D, and M for each specific module,
respectively. EMo and IMo are the excitatory and inhibitory input,
respectively. Θ(0, η) is Gaussian noise with mean 0 and variance
η,modeling background fluctuations. The output firing rate of units
is a logistic sigmoid function rMo

i = 1/(1 + e(1−VMo
i )/β) with para-

meter β regulating the slope. Although the dynamics of specific
neurons in the fly brain is unknown, the employment of Eq. (1)
in our systems-level model is reasonable because it captures the
general properties of neuron firing.

Except the C- and D-modules explained below, the recurrent or
lateral connectionswithin amodule are defined as a Difference-of-
Gaussians function:

Wd = κ · (e−d2/32
− 0.4e−d2/128) − ρ

WEij = [W(i−j)]
+ (2)

WIij = [−α · W(i−j)]
+

where [x]+ is defined as max(x, 0). WEij and WIij are the
excitatory and inhibitory kernels, respectively, representing the
lateral connections from the jth to ith unit. Parameter α controls
the strength of lateral inhibition. According to model hypothesis,
a topographic spatial map exists among modules. Neighboring
cell units have partially overlapping receptive fields in each
module, and units are arranged by their preferred position of
visual targets. The nature of interaction described in (2) is based
on data about lateral connections among neighboring units with
similar or different preferred stimuli, which is widely used in
recurrent network modeling (Cisek, 2006; Dayan & Abbott, 2001).
Specifically, lateral connections are characterized by an on-center-
off-surround architecture as shown in Fig. 2(A), where interactions
vanish for units too far away from each other.

Parameters are set as N = 80, η = 0.5, τMo
= 20 ms except

τ C
= 30 ms and τD

= 5 ms, and κ = 1.0, ρ = 0.1 with an ex-
ception ρ = 0.01 in the P-module. Except where otherwise indi-
cated, we use β = 0.3 for the sigmoid function of unit output and
α = 1.0 for the lateral inhibition strength. The integration time
step is 0.02 ms. Different time constants are based on biological
realism in mammals. Inhibitory neurons have much shorter mem-
brane time constants than excitatory neurons do, which is widely
used inmodels (Gruber, Dayan, Gutkin, & Solla, 2006;Wang, 2002).
The brain area involved in color processing has a slower dynamics
relative to other visual areas, as modeled in Cisek (2006). A smaller
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position feature.

value of parameter ρ in P-module leads to much stronger exci-
tatory and weaker inhibitory recurrent connections. This setting
comes from the functional consideration of helping to form a noise
against encoding of position features, even with a weak input.

The dependence of the model on small changes in all
parameters including those defined in the following subsections is
analyzed by varying each parameter to either increase or decrease
in each simulation run. Amounts of simulations performed show
that the model is robust to precise fine-tuning of each parameter,
and our results are insensitive to the specific choice of parameter
values.

2.4. Details of individual modules

2.4.1. Visual input and feature detector modules
Two pairs of visual horizontal bars used in behavior experi-

ments in Zhang et al. (2007) are reduced to onepair in themodel for
simplification (Fig. 3(A)). Due to a large visual field of about 270° in
Drosophila, two bars should always be visible. This is simulated by
a persistent input to P- and C-modules. P-module houses position
detector units with a resolution of 1°. Units have preferred vertical
positions uniformly covering the interval [−(N/2)°, +(N/2)°] =

[−40°, +40°]. These units have Gaussian receptive fields, result-
ing in two bumps of activity in P-module. The spatial distance
1 = P2 − P1 between two bumps thus encodes the physical sep-
aration 1COG between two bars, where P1 and P2 denote the unit
index of two bump centers showing maximal activity (Fig. 2(B)).
For the sake of clarity, the locations of units P1 and P2 are always
symmetric to the center of the P-module. Instead of the1COG, pa-
rameter 1 below describes the position saliency of visual targets.

The total excitatory and inhibitory inputs to the ith unit of P-
module are as follows:

EP
i =

−
j

WEij · rPj + VIPi

IPi =

−
j

WIij · rPj (3)
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VIPi = 0.8

e−

(i−P1)2

2σ2 + e−
(i−P2)2

2σ2


where VIPi is the visual input, and σ controls the width of the
Gaussian receptive field of individual units (σ = 4.0).

For the sake of clarity, only two color detector units are included
in the C-module with preferred colors blue and green respectively.
There are no recurrent connections within this module. The
excitation and inhibition inputs to the ith unit are defined as:
EC
k = VICk = 1.5

ICk = 0.1rCk′ (k ≠ k′) (4)

where k or k′
= {1, 2}, and VICk takes the same value for both green

and blue, simulating the color input.

2.4.2. Feature binding module
The binding module receives input from P- and C-modules

to help object perception and recognition (Treisman, 1998).
According to hypothesis (3), it also functions as the location for
simple decisions to be made under memory-dependent biasing.

Let us first focus on the input from feature detector modules,
which is hypothesized to be controlled by the shift of the attention
window. Features cannot be reported to the B-module unless the
feature occurs in the window of attention. It is consistent with a
working model of translation invariance (Tang et al., 2004). For
naïve flies, it is reasonable to assume that the window of attention
randomly spotlights visual targets with equal probability. It
accords with a crucial property of attentional deployment: the
process by which the currently attended location is prevented
from being attended again (Itti & Koch, 2001). With respect to
conditioned flies, top–down control may affect attention on the
basis of bottom–up cues. In the model, however, the shifting
pattern of the attention window is assumed to be independent of
experience for simplification. Actually in face of two bars having
cues, predicting safety and danger, mixed together, adopting a
random shifting of attention spotlight is natural or reasonable to
animals.

By defining parameter ATNi to simulate the effect of the
attention window, the B-module has the following inputs:

EB
i =

−
j

WEij · rBj + ATNi · (wP→B
ii · rPi + wC→B

ik · rCk )

IBi =

−
j

WIij · rBj + wD→B
ii · rDi + f C (1) (5)
where wP→B
ij is synaptic weight from the jth unit of the P-module

to the ith one of the B-module (wP→B
ij = 2.5 for j = i and falls off to

zero otherwise). The C-module projects to the B-modulewith a low
spatial resolution. The specific weight iswC→B

ik = 2.0 for |i − Pk| <
10 (k = 1 or 2) and otherwise falls off to zero. The attention
window randomly spotlights two bars with a period of 100 ms
and covers one bar each time. Since the P-module only holds two
bumps, parameter ATNi simply takes 0 or 1 with probability 0.5 at
the beginning of every 100 ms period, where i = 1, . . . ,N/2 and
ATNi+40 = 1 − ATNi.

The last two terms in the second formula of Eq. (5) describe
a biasing modulation due to danger-related memory. Position
memory is stored in wB→D

ij as explained in the next Subsection,
while feedback connections from D- to B-modules have no
plasticity for simplification (wD→B

ij = 5.0 for j = i and falls off
to zero otherwise). Color-related learning and memory is not
explicitly simulated in the model for simplification. But its effect is
mimicked by the function f C (1), which will be explained in detail
in the section ‘‘Results’’ below.

2.4.3. Danger detecting module
As the site of position memory storage, the D-module can be

activated by input from the B-module through learned synaptic
connections wB→D

ij after conditioning and/or by heat US stimulus
during conditioning.

An association between heat punishment and position feature
is established during conditioning. No lateral connections are
proposed in the D-module to emphasize the US, and the excitatory
and inhibitory inputs are as follows:
ED
i = USi + wB→D

ii · rBi

IDi = 0.0 (6)
where USi describes heat US-induced input with value 1.0 for
|i − P| < 10 and 0 otherwise. Here P denotes the center unit index
of the group encoding the bar coupled with heat punishment
during conditioning. Synaptic weight wB→D

ii has initial values 0
before training and obeys the following learning rule. Note wB→D

ij
is zero for j ≠ i.

τ Learning dw
B→D
ii

dt
= rBi · rDi − 0.1(rDi )2 · wB→D

ii (7)

where τ Learning is a time constant controlling the learning rate.
This is a typical Oja rule with a good stability and widely used
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in network modeling (Dayan & Abbott, 2001). The evidence for
Hebbian plasticity learning rule in insects was recently reported
(Cassenaer & Laurent, 2007).

2.4.4. Decision-making module
When confronted with conflicting cues, the M-module is

switched on to help solve the choice problem according to model’s
hypotheses. Compared with other modules, the M-module is the
sole target of dopaminergic release. A raised dopamine level in
the M-module is hypothesized to enhance the lateral inhibition
between units (Fig. 2(A)) and steepen individual units’ response
function (Fig. 2(C)). TheM-module units have the following inputs:

EM
i =

−
j

WEij · rMj + wB→M
ii · rBi

IMi =

−
j

WIij · rMj (8)

where the last term of the first formula represents the direct
projection from the B-module, here wB→M

ij = 2.5 for j = i and
falls off to zero otherwise. Dopamine modulation takes effect by
resetting the values of parameters β in rMj and α in WIij of the M-
module. Two examples are shown by the dashed curve in Fig. 2(A)
and (C) respectively, where the lateral inhibition and unit response
gain are separately increased by 2.8 and 3 times.

The computational role of dopamine assumed above is based
on the better-known modulation of dopamine in some mammals.
Gain control in Fig. 2(C) describes the catecholamine-, particularly
dopamine-mediated increases in the responsibility or signal-to-
noise ratio of cortical neurons (Gruber et al., 2006; Servan-
Schreiber, Printz, & Cohen, 1990), which is generally consistent
with the stabilization effects of dopamine in biophysically-
grounded cortical models (Brunel & Wang, 2001; Durstewitz,
Seamans, & Sejnowski, 2000). The enhanced lateral inhibition, as
shown in Fig. 2(A), is indirectly defended by several evidences.
The D1 dopamine receptor increases the excitability of fast-spiking
interneurons, which enhances evoked and spontaneous IPSCs
recorded in pyramidal cells in the prefrontal cortex (Gorelova,
Seamans, & Yang, 2002; Seamans, Gorelova, Durstewitz, & Yang,
2001; Trantham-Davidson, Neely, Lavin, & Seamans, 2004).

BothD1 andD2dopamine receptors and theGABAA receptor are
highly enriched in the DrosophilaMB (Han et al., 1996; Hearn et al.,
2002; Kim et al., 2003; Liu, Krause, & Davis, 2007). Recent studies
began to identify the dopaminergic role on the cell physiology in
insects. A subset of MB-innervating dopaminergic neurons gate
the MB output by releasing dopamine in fruit flies, and dopamine
applies an inhibition to MB neurons (Krashes et al., 2009). A
dopamine D1-like receptor in Drosophila was found to mediate
the suppression of cholinergic synaptic transmission through a
non-cAMP/protein kinase A signaling pathway (Yuan & Lee, 2007).
Furthermore, theK+ channel inMBKenyon cellswas shown to be a
target molecule of dopamine in crickets (Aoki, Kosakai, & Yoshino,
2008). It revealed that besides second-messenger pathways, ion
channels and protein kinase C also interact with D1-like receptors,
similar to that seen in vertebrates. Future studies are expected to
measure electrophysiological responses of MB neurons in various
dopamine concentrations to test our assumptions on dopamine
modulation.

2.5. Task design for computer simulation experiments

The task is divided into two stages: training and decision-
making. Each trial takes 2 s. Two color bars with 1COG = 60°
are used for training, which invoke a preferred response of two
bumps centered at units P1 = Pb0 and P2 = Pg0 in the P-module,
respectively (Fig. 3(B)). Subscripts ‘b’ and ‘g ’ mark the blue and
green colors, respectively. At the same time two units in the
C-module are activated by the preferred color. To make the
description clear below, the blue bar is assumed to be coupledwith
heat punishment, while facing the green one is safe. According to
themodel’s hypothesis on the topographic application of US input,
heat US is applied to unit group centered at Pb0 in the D-module
once the blue bar enters the attention window. The choice task
is different from training in two respects. First, the heat US input
is removed. Second, the network is presented with two bars with
their colors exchanged and 1COG decreased compared with that
used for training. As shown in Fig. 3(C), two bumps centered at
P1 = Pg and P2 = Pb are activated during the choice period.

2.6. Definition of choice PI

Model performance is evaluated by choice PI in B- orM-module,
which is defined as PIMo

= (t2 − t1)/T . T is trial duration, and t1 (or
t2) is the accumulative time for the bump centered at unit P1 (or
P2) to win competition within the module Mo. Since two bumps
encodes danger and safe bar respectively (see task design above),
t1 and t2 is actually the time for the model to make a decision with
a preference for color or position cue.

The winner is determined by comparing the activity intensity
between two bumps, which is measured by averaging frequencies
among the units involved. In our simulations, the bump center
unit together with its nearest neighbor six units is included in
the operation of frequency averaging. The frequency of the bump
centered at unit P1 (or P2) is denoted as f1 (or f2). If (f1 − f2) > 0.5,
bump 1 wins the competition at the moment. And bump 2 wins if
(f2 − f1) > 0.5. Other situations, in which the difference between
f1 and f2 is less than 0.5, are classified to a hesitating or non-choice
state. Note that individual units’ firing frequencies are normalized
to the range [0, 1] in the model.

3. Results

3.1. No preference for any visual target before learning

Drosophila without prior training tracks any visual stimulus
randomly, i.e., shows no preference. It is the basis or starting point
of experimental paradigmdesign of operant conditioning in a flight
simulator. The fact is used to rectify our network before learning.

Let us present a pair of color bars to the model to test its initial
preference. As an example, a pair of bars evoking bumps separately
centered at units P1 = Pg = 19 and P2 = Pb = 59 in P-module is
used (top panel in Fig. 4). Persistent activities of two units in the C-
module detect and encode green and blue colors, respectively (data
not shown). Because of nomemory-dependent biasing from the D-
module, the binding module is purely controlled by the attention
window. It is found in simulations that the choice PI of the B-
module (PIB) may be any value ranging from −1.0 to +1.0 if the
trial is repeated, which seriously deviates from a no-preference
standard. It is easy to understand: for a given short trial like T = 2 s
a random shifting of the attention window does not necessarily
lead to an equal or roughly equal attention time to two bars. To
ensure a no-preference performance, only the shifting patterns of
the attention spotlight inducing a PIB close to 0 or less than 0.1
are selected for computer simulations below. This can be easily
realized in programming by remembering the random seed of the
qualified random patterns. An instance with Pg = 19 and Pb = 59
is shown in Fig. 4, in which the dynamics and average frequency of
two bumps in the B-module are illustrated.

Changing the bar separation 1COG denoted by parameter 1 to
different values and repeating the trial in the same way as above,
we obtain a PI curve only including PIB close to zero (dashed line
in Fig. 5(A)). Starting from the no-preference model for any bar
stimulus, we investigate below how the memory and dopamine
affect decision-making.
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Fig. 4. Network dynamics before training. During a 2 s presentation of two bars
with Pg = 19 and Pb = 59, unit activities within the P- and B-modules are
respectively shown in the top and middle panel. Color indicates changes in
normalized firing rate (see scale). The color scale also applies to Fig. 6(A), (C), and
(D). The bottom panel gives the average frequencies of two bumps within the B-
module with PIB indicated.

3.2. Learning and feature-dependent memory

A 2 s-training trial is applied to the network, simulating the
conditioning of Drosophila at the flight simulator. The M-module
is excluded during this period, because MBs are dispensable for
visual learning (Wolf et al., 1998). A pair of color barswith1COG =

60°, P1 = Pb0 = 10, and P2 = Pg0 = 70 is used for visual stimuli,
while an excitatory input USi is given to a group of units i with
|i − Pb0| < 10 in D-module, simulating the heat punishment as
explained in Eq. (6). The simultaneous activation of twounit groups
centered at Pb0 = 10 in the P- and D-modules leads to synaptic
plasticity. By using the learning rule in Eq. (7), specific connections
wB→D

ii from pre-synaptic units in the B-module to post-synaptic
ones in the D-module are established during learning (Fig. 5(B)).
Although the Oja rule is applied here, it does not mean that the
training needs a unique learning rule. Computer simulations show
that any Hebbian rule based on pre- and postsynaptic activity with
synaptic weight normalization works (data not shown).

wB→D
ii stores a kind of position-related memory. Because little

is known about the color-dependent memory in Drosophila, it is
not explicitly modeled in the study. A freely set function f C (1)
in Eq. (5) is simply used to simulate the inhibition effect on B-
module of the conditioned color-related memory. The strength of
f C (1) is assumed to increase linearly when 1 approaches zero
(Fig. 2(D)), while it is zero when 1 is greater than or equal to 30.
f C (1) simulates an increase in the relative saliency of the color
cue with the decrease in the saliency of the position cue. Questions
about the anatomic site of this color-dependent memory and the
source of related inhibition still remain open.

3.3. Simple choice with defective or lesioned MB

The choice performance of a trained neural network in the
task of Fig. 3(C) is tested without the M-module, mimicking the
case in which flies with ablated MB structures or functions are
confronted with conflicting cues. A decision is made in the B-
module and can be fed directly to the motor center to initiate a
behavior that is not part of the work. Facing a pair of bars with
their colors exchanged compared with memory, the network is
forced to decide which cue should be followed to avoid danger.
Results show that the networkweights the pros and cons naturally
based on a feature-related memory. The closer the parameter
Pg is to Pb0, the more salient the position cue is and the more
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Fig. 5. (A) Choice curves for task in Fig. 3(C). Before the learning network shows no
preference for two targets, which is evidenced by PIB near zero (dashed line with
square markers). After training, a linear choice behavior emerges in the circuit with
the M-module excluded (solid line with diamond markers). In an intact network,
the small choice PI originating from the B-module is substantially increased with
dopamine modulation in the M-module, resulting in a clear-cut decision behavior
(solid sigmoid curve with filled circle markers). Phasic dopamine begins from t r =

320 ms and takes effect as α = 2.8 and β = 0.1. (B) Feed-forward projections
from the B- to D-modules. They are established during learning with learning rate
τ Learning

= 40 ms. The biggest synaptic weight occurs at i = 10.

strongly the D-module is activated through the learned synaptic
weights wB→D

ii . The number of activated units in the D-module
actually measures the extent of danger. An inhibitory feedback
proportional to danger is projected from the D- to B-modules
through hard connections wD→B

ii , weakening the bump centered
at Pg . It makes the model tend to choose the bar encoded by the
bump centered at Pb, resulting in a positive choice PI in the B-
module PIB. This is apparently a choice with preference for the
position cue, and such a decision way dominates for 1 > 30.
Once 1 < 30 is satisfied, the bump centered at Pb, to which the
conditioned color is bound, is inhibited due to an increase of the
color saliency as explained by the function f C (1) in Eq. (5). Such
an inhibition gradually becomes notable when 1 approaches zero
(Fig. 2(D)), whereas the bump centered at Pg is relieved from the
position memory-related inhibition. It results in another tendency
for the model to make a decision with preference for the color cue,
giving a negative PIB.

In sum, the balance of no-preference for two bars before
training is broken by memory-dependent biasing. Two bumps
encoding potential choices are partially or completely inhibited
depending on the relative saliency of position and color cues. To
go deep into the choice process, three examples with 1COG =

{50°, 40°, 15°} are illustrated in Fig. 6 (with all M-module panels
excluded). It can be seen that the D-module gradually loses
excitation and becomes silent with the decrease of 1COG,
highlighting an increase in the relative impact of the color cue
on decision-making. By changing 1 and repeating the choice task,
more data about the PIB are obtained and fit well by a straight line,
as shown by the solid line in Fig. 5(A). This linear choice curve
accords with the behavioral data in Zhang et al. (2007).

3.4. Clear-cut decision-making with the involvement of dopamine-
MB circuit

This section is devoted to probe how an intact network
model makes decisions, given the choice task in Fig. 3(C). By
‘intact’, we mean the availability of both pathways in the model
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Fig. 6. Examples of choice process with different visual cues. (A) Unit activities during a choice trial with two bars described by Pg = 14 and Pb = 64. ‘P ’, ‘B’, ‘D’, and ‘M ’
on the right of each panel denote P-, B-, D-, and M-modules, respectively. Within the M-module the dopamine level is raised from tR = 320 ms, which resets parameters
α = 2.8 and β = 0.1. (B) Average frequencies of two bumps of activity within the B- (top) andM-modules (bottom) in (A) with choice PIs indicated. (C) Choice process with
Pg = 32 and Pb = 47. Other parameters are the same as that in A. Choice PIs are PIB = −0.459 and PIM = −0.799. (D) Choice process with Pg = 19 and Pb = 59. Dopamine
level raising begins at 245 ms by setting parameter α = 5.0 and ends at 1100 ms by resetting α back to the previous value as α = 1.0. Yellow lines in M-module mark the
onset time (A, C) or period of raised dopamine level (D).
(Fig. 1), simulating the case of wild-type flies. The second
pathway via the MB is switched on by task complexity. The M-
module receives direct projection from the B-module through hard
synaptic connections. The choice PI in theM-module PIM should be
almost the same as PIB if there is no other modulation. However,
recognition of conflicting cues induces a phasic dopaminergic
release to the M-module according to our model hypotheses. The
onset time of dopamine increase is denoted by tR, from which
an increase of dopamine level critically promotes competition
between two bumps by enhancing the lateral inhibition between
units (Fig. 2(A)) and steepening the units’ response function in the
M-module (Fig. 2(C)). Two effects are separately simulated by an
increase of parameter α in WIij and a decrease of parameter β in
rMj . Fig. 6(A)–(C) give two examples with onset time tR = 320 ms
and raised dopamine level as α = 2.8 and β = 0.1. Fig. 6(B)
gives average frequencies of two bumps versus time during the
choice process of the B- andM-modules in Fig. 6(A). Apparently the
stronger bump completely soon wins the competition, resulting in
a obviously improved choice PIM compared with PIB. This is clear-
cut decision-making. To further investigate dopaminemodulation,
we first check the effect of parameters related with the dopamine
level by fixing the onset time of an increase in dopamine release.

Take the task with 1 = 40 (Pg = 19 and Pb = 59) as an
instance. Set tR = 245 ms, at which the stronger bump encoding
the blue bar is dominating the M-module. To distinguish the roles
of enhanced lateral inhibition and gain of unit response, only one
of the single parameters α and β is changed in simulations. Results
find that there exists a proper range of parameter α, in which the
stronger bump soon completely wins the competition. As shown
by the red curve in the left panel in Fig. 7, increasing α to any value
within the range α ≥ 4.0, while keeping β unaffected by increased
dopamine, results in a total win of the stronger bump. Such clear-
cut choices are quantitatively indicated by a rise in PIM − PIB from
around 0.1 before raising dopamine to around 0.7. In contrast, our
simulations show that enhancing the gain of unit response itself,
simulated by a decreased β , does not work for getting a clear-cut
choice (red curve in middle panel in Fig. 7), except that lateral
inhibition is enhanced at the same time (black curve in middle
panel in Fig. 7). Moreover, we find that simultaneously decreasing
parameter β can extend the proper range of α required for a clear-
cut choice to smaller values. For example, α ≥ 2.5 together with
β = 0.1 is enough for a choice very similar to that reached by
α ≥ 4.0 alone (black curve in left panel in Fig. 7).

To find out whether and how the onset time of dopamine
increase affects the final choice, we repeat simulations as above
except using different onset times. Results show that there exist
proper dopamine levels that can ensure a total win of the stronger
bump so long as the increased dopamine begins when the stronger
bump either dominates theM-module or coexists with the weaker
one. Otherwise, the weaker bump has a chance to be turned
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Fig. 7. Robustness of dopamine modulation against variations of single parameters α, β , and tR . All choice trials have the same visual cues with Pg = 19 and Pb = 59.
Decision-making behavior are quantified by choice PI difference PIM − PIB . See text for details.
into a winner if the enhanced lateral inhibition is large enough.
Coexistence of two bumps happens around a transition of the
attention window, during which competition is found to be more
sensitive to a raised dopamine level. One example is tR = 145 ms
around the first attention transition. The optimal range of α
required for the stronger bump towin the choice narrows (the right
panel in Fig. 7) compared with the case with tR = 245 ms (the
left panel in Fig. 7). Much greater α even turns the weaker bump
encoding the green bar into the winner, as shown by a negative
PIM − PIB. It can be understood if we notice that enhanced lateral
inhibition takes effect not only between bumps but also within
single bumps. These simulations predict that increased dopamine
concentration, should begin when the ‘salient’ bar enters the
attention window. It should be at least after the attention window
scans each target once,which is theminimal time toperceive visual
stimuli.

It is interesting to note an inverted U-shape of optimal
dopamine levels (the right panel in Fig. 7). Actually in mammals
the inverted U-shape effect of dopamine has been earlier demon-
strated: either insufficient or excessive dopamine concentration
impairs cognitive functions (Seamans & Yang, 2004). Our model
predicts that a moderate or intermediate concentration of in-
creased dopamine is also required in nonlinear decision tasks in
Drosophila.

A natural question is what happens if dopamine returns to the
previous level or base-line. We perform simulations by restricting
phasic dopamine release within a finite period. Results show that
clear-cut choices induced by phasic dopamine are rapidly replaced
by a linear choice once parameters α and β return to initial values.
An example is shown in Fig. 6(D), where raising dopamine is
limited between two yellow lines in theM-panel. Awell-recovered
dynamics emerges in the M-module after dopamine returns to
its previous level, showing that the dopamine modulation effect
is reversible. Reversible dopamine modulation is meaningful to
Drosophila, whose neural system can prepare for coming choices
in a changing environment.

More examples with other different 1COG are performed to
check the qualitative dependence of dopamine modulation on
parameters α, β , and tR. Results show a good consistency. The
choice behavior of the network is quantified by computing PIM as
a function of 1. We obtain a sigmoid choice curve as shown in
Fig. 5(A). Comparedwith the simple linear choice, the involvement
of dopamine in M-module makes the slight difference between
bumps, originated from the memory-dependent biasing in the B-
module, rapidly enlarged. It turns a hesitation between two visual
targets into a clear-cut decision, which accounts for the saliency-
based decision-making in Zhang et al. (2007).

Finally, it should be pointed out our model does not exclude
other possible synaptic/cellular/circuit mechanisms of dopamine
modulation, given that they are evidenced to function in enlarging
the slight difference in activity between two neuron groups
encoding two potential choices. A recentmodeling study proposed
that phasic dopamine induces a bistability in striatal spinyneurons,
which plays a critical role in saliency-selective gating of the
working memory from basal ganglia to the prefrontal cortex
(Gruber et al., 2006; Gruber, Solla, Surmeier, & Houk, 2003).
Whether similar effects of dopamine occur in theMB and take part
in producing nonlinear choice behavior remains open.

4. Discussion

4.1. Testable predictions

Our model study makes several predictions that can be tested
experimentally. Ambiguous/conflicting visual cues should activate
dopaminergic neurons projecting to the MB, evoking a phasic
dopamine increase in the MB. More accurately, phasic dopamine
should begin when the animal perceives a difference in value
between two visual targets. This prediction can be indirectly tested
at a behavioral level: the time it takes to make a decision should
be inversely proportional to |1COG − 30°| in the task of Fig. 3(C).
The larger the parameter |1COG − 30°|, the more rapidly the
animal recognizes a difference in value between two bars based
on memory. Take the case with 1COG ≈ 30° as an example, in
which the activities of two bumps projected from the B-module are
almost equal. Our model predicts that no phasic dopamine release
would occur. Of course, there are always random fluctuations in
background activity in vivo. It could break the balance between two
ideal input bars with no saliency. Thus in the case of 1COG ≈ 30°,
whether phasic dopamine release is induced to promote a clear-
cut decision in practice depends on whether a saliency difference
is actually perceived or not, we speculate.

Another direct prediction is that significantly increased acti-
vation of GABA receptors should be observed in the MB in com-
pany with a raised dopamine level. If the signal-to-noise ratio of
MB neurons can be measured in vivo, it should also be increased
according to our model’s results. Finally optimal dopamine levels
should show an inverted U-shape in decision-making behavior in
Drosophila.

4.2. Comparison with related models on decision-making

To our knowledge, the model is the first one aiming at
simulations of decision making in Drosophila. From the viewpoint
of the basic computations involved inmaking a choice inmammals
(Gold & Shadlen, 2007; Rangel et al., 2008; Sugrue et al., 2005),
the model is an oversimplification. It ignores such issues as action
selection and outcome evaluation. And working memory that
is thought necessary in the decision-making in insects (Menzel,
2009) has not been considered in the model yet. However, in
spite of its simplicity the model reveals, at a systems-level,
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the neurocomputational mechanism underlying the experience-
dependent formation of value, the role of dopamine in the
transformation from a linear to nonlinear decision, and etc.

Compared with biologically inspired models (Cisek, 2006;
Lo & Wang, 2006; Soltani, Lee, & Wang, 2006; Soltani &
Wang, 2006; Usher & McClelland, 2001; Wang, 2002), our
model adopts previous ideas: encoding choice alternatives by
different unit groups and resolving decision-making by a winner-
take-all process. It is basically consistent with value-based
choice models by Soltani et al. (2006) and Soltani and Wang
(2006) in the sense that the value difference between two
alternatives can be specifically computed at or traced to synaptic
strength. On the other hand, the model essentially differs from
previous ones. It aims at understanding two distinct choice
behaviors: linear and nonlinear or clear-cut. The former leads to
a choice probability directly proportional to a linear subtraction
of alternative intensities or values, while the latter involves a
nonlinear amplification of the linear subtraction by dopamine.
Both involve a common selectionmechanism and are value-based,
but only the nonlinear choice can be observed in wild-type fruit
flies confronted with conflicting cues. By contrast, other models
(Soltani et al., 2006; Soltani & Wang, 2006) do not distinguish two
categories of choice behaviors. In their models, choice behavior,
quantified by the probability of choosing one target, is declared
to be well-fitted by a sigmoid function of the input difference
between two alternatives. But according to their data, it seems that
a linear regression fits behavioral data much better than a sigmoid
curve does (see Fig. 7 in Soltani et al. (2006), Fig. 3 in Soltani
and Wang (2006), and Fig. 1(c) in Kepecs et al. (2008)). We are
supposing that only when an additional mechanism, for instance,
similar to the dopamine modulation in the model, is applied to
their network, a true sigmoid function of choice probability vs. the
input difference can occur. Another difference from their models
lies in the hypothesis about anatomical location of plastic synapses
underlying value formation. Input synapses on to a decision circuit
are endowed with a plasticity (Soltani et al., 2006; Soltani &
Wang, 2006), while our model proposes a separate memory area
or danger detecting area for learning. Besides, our model has other
apparent differences from previous ones, ranging from model
structure to choice task design. We omit a detailed list here.

Escaping to a safe place is imperative for flies confronted with
cues predicting punishment danger. Clear-cut decision is therefore
the best strategy in face of conflicting cues implying possible
danger, we believe, although it may not be an optimal one in face
of conflicting cues invoking appetitive memory. In contrast with
flies experienced in aversive reinforcement, most other models
discussed above are based on an animal’s appetitive memory. This
may be a reason why those models do not distinguish two choice
behaviors.

Bayesian methods are successful for developing computational
theories for perception and sensorimotor control in a world of
sensory uncertainty, and humans are believed to behave as optimal
Bayesian observers (Beck et al., 2008; Knill & Pouget, 2004; Körding
&Wolpert, 2006). Although we agree that drosophila may also use
Bayesian inference to avoid danger and search for food sources in
daily life, the choice task in Fig. 3(C) is an exception. According
to Bayes rule, a fly’s belief in that observed conflicting cues
(denoted as o) mean heat danger (denoted as s) should be a
probability function characterized by p(o/s)p(s)/p(o). However,
the fly was present in only one case with 1 = 60 in previous
training, as shown in Fig. 3(B). Such conditioning does not allow
flies to integrate information over cue position and color. The
prior probability p(s) could not be learned through the limited
experience. How much more likely the truth of danger s makes
o, quantified by the ratio p(o/s)/p(o), is also unavailable. We
therefore think Bayesian considerations are not helpful in this
study.
4.3. Role of dopamine in visual learning in Drosophila

Midbrain dopaminergic neurons in mammals encode a
prediction-error signal to guide reward-related learning, as de-
scribed in various reinforcement learning models like actor-critic
ones (Dayan & Abbott, 2001; Montague, King-Casas, & Cohen,
2006; Sutton & Barto, 1998). At the cellular level dopamine mod-
ulation is required in synaptic plasticity, for example, at the corti-
costriatal synapses (Reynolds, Hyland, & Wickens, 2001; Reynolds
& Wickens, 2002).

Very little is known aboutwhether there is a similar error signal
guiding learning in insects. For olfactory learning in Drosophila,
dopaminergic neurons convey aversive reinforcement, contrasting
with their established role in mammals. Octopaminergic neuronal
activities are only necessary for conveying rewarding US in
appetitive learning (Keene & Waddell, 2005; Riemensperger et al.,
2005; Schroll et al., 2006; Schwaerzel et al., 2003 but see
Kim, Lee, & Han, 2007 for the critical role of D1 dopamine
receptor in both aversive and appetitive conditioning). With
respect to visual learning in insects the role of dopamine is
unclear, although dopamine has been reported tomediate aversive
visual conditioning in crickets by a pharmacological approach
(Unoki, Matsumoto, & Mizunami, 2006). During visual operant
conditioning, like in Zhang et al. (2007), it is even more difficult
to detect the dynamics of dopaminergic neurons. This is why the
dopamine effect is excluded from the learning rule in Eq. (7), which
is in contrast to a dopamine- or reward-dependent learning rule in
previous models (Soltani et al., 2006; Soltani & Wang, 2006). Note
that this exclusion does not affect the final association between CS
and US in the model. Future physiological tools and experiments
in conjunction with powerful fly genetics are expected to provide
insights into the role of dopamine in visual learning in Drosophila.

4.4. Attention and MB

Fixation or tracking behavior induced by visual targets at a flight
simulator was referred to as visual selective attention in fruit flies
(Heisenberg et al., 2001; van Swinderen, 2005;Wuet al., 2000). Our
model strongly proposes that paying attention to a visual target
is separated from a fixation behavior towards the target, at least
in the case of being confronted with a choice task. In addition, it
should be noted that feedback from theMB to othermodules is not
considered in the model for simplification. But at least the MB was
shown to be involved in selective attention (Xi et al., 2008). Future
studies, especially by electrophysiological tools in Drosophila, are
expected to provide new lights on these questions.

Besides a mediator of olfactory learning (for review see Davis,
2005; Heisenberg, 2003; Roman & Davis, 2001), the MB is a
prominent insect brain structure linked to sensory integration,
motor control, and certain types of learning and memory. It is
interesting to note a similarity in cognitive function between the
MB and the prefrontal cortex. As a main target of dopaminergic
projection, the prefrontal cortex is considerably regulated for
optimal cognitive function (Seamans & Yang, 2004). Flies lacking
MBs seem to have difficulties in stopping spontaneous walking
even if it meets a water moat. The attention-like tracking
behavior is impaired in flies with deficient MB (Xi et al., 2008).
The explanation of these defects in visual cognition and motor
control cannot detour the gating role of dopaminergic-MB circuit
elucidated in the model, we believe.

4.5. Modeling approach in Drosophila study

In contrast to that mathematical models have widely been ap-
plied to reveal the circuitmechanism inmany animals even includ-
ing relatively simple ones like C. elegans, so far themodeling efforts
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are quite lacking in Drosophila studies (Olsen & Wilson, 2008). It
is mainly due to a still difficult monitoring of specific activities in
Drosophila neurons by electrophysiological measurements. On the
other hand, we do note that modeling studies have begun on the
MB function in olfactory associative learning/memory, sparse en-
coding, and pattern recognition (Finelli, Haney, Bazhenov, Stopfer,
& Sejnowski, 2008; Huerta & Nowotny, 2009; Huerta, Nowotny,
Garcia-Sanchez, Abarbanel, & Rabinovich, 2004; Nowotny, Huerta,
Abarbanel, & Rabinovich, 2005; Smith,Wessnitzer, &Webb, 2008).
These models were inspired by recordings in insects with a big-
ger body size (for example, in locusts Cassenaer & Laurent, 2007;
Perez-Orive et al., 2002). Recent progress in techniques, from
accurately locating visual memory (Liu et al., 2006; Pan et al.,
2009) to recording salience-modulated local field potentials (van
Swinderen &Greenspan, 2003) inDrosophila is expected to convert
Drosophila to one of the better organisms for computational neu-
roscience. Our model is such an attempt by organizing anatomical
and behavioral data recently obtained, which aims at elucidating
the decision mechanism in a neural system as simply as fruit flies.
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