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We have analyzed the number and morphology of all major 
endocytic compartments in bec-1 mutant intestinal cells in 
vivo using a set of GFP-tagged markers that label each class of 
compartment. Our goal was to determine if there was a block 
in a particular transport step caused by the lack of bec-1 activ-
ity by measuring specific changes in endosome morphology, and 
intensity or number of GFP markers. We would expect that an 
endocytic compartment that normally receives cargo in a BEC-1 
dependent fashion would be smaller in size or be lacking com-
pletely in intestinal cells lacking BEC-1 activity. We would also 
expect an accumulation or an enlargement of BEC-1 dependent 
endosomes or BEC-1 donor compartments in the bec-1 mutant 
intestines. Trafficking from the cell membrane to the lysosome 
requires the activity of Rab5 and Rab7 GTPases.75 Rab GTPases 
regulate intracellular trafficking by controlling the transport 
of vesicles between membrane compartments along endocytic 
transport. Rabs alternate between an “active” guanosine tri-
phosphate (GTP)-bound state and an “inactive” guanosine 
diphosphate (GDP)-bound state. Active Rab5 localizes to early 

and have the maternally derived wild-type BEC-1 function, live 
to early adulthood. These homozygous bec-1 mutant animals 
display a striking accumulation of vacuoles in different tissues 
including the intestine and hypodermis. They are also uncoordi-
nated in their movement.

Studies in mice have shown that lack of beclin 1 activity is 
also lethal. beclin 1 mutants die at day 7.5 of development,12,13 
whereas atg5 and atg7 mutant mice die after birth in the period of 
starvation before the animals begin to breastfeed.33,74 Therefore, 
it is possible that the difference between the phenotype of beclin 
1 and other autophagy genes is due to beclin 1 having additional 
defects in endocytosis in mammals.

bec-1 mutants display endocytic defects. The lack of accu-
mulation of endocytic tracers in coelomocytes indicates that the 
internalization step of endocytosis is defective in bec-1 mutants. 
This is consistent with previous reports of a pronounced defect 
in bec-1 mutants when assaying for the uptake of vitellogenin 
by oocytes,31 a process that requires endocytosis. Thus, bec-1 is 
required at an early step in endocytic trafficking.

Figure 5. bec-1 mutants display lack of cell corpse clearance. (A) Micrograph of transmission electron microscopy (TEM) where poor degradation of 
apoptotic germ cell corpses is observed in bec-1 mutants. This TEM image was taken in a cross-section through the midbody. A rounded dying germ 
cell is shown with very dark cytoplasm and several large round vacuoles near the nucleus, which contains clumped chromatin. The dying cell is com-
pletely wrapped by the somatic sheath cell (tinted in purple) in an early phase of apoptosis. The sheath cell also wraps the normal germ-line (bottom 
two cells in the panel), separating this mesodermal tissue from the intestine (top cell in the panel). (B) Histogram indicating the distribution of the 
duration of germ cell corpses before they are completely degraded. The y-axis indicates the percentage of germ cell corpses that lasted for the period 
of time indicated in the x-axis before clearance. n is the number of cell corpses analyzed. (C) Representative images of CED-1::GFP positive labeled cell 
corpses in wild-type animals after treatment with control RNAi and RNAi against bec-1 and vps-34. (D) Quantification of germ cell corpses in wild-type 
animals after treatment with control RNAi, and RNAi against unc-51/Atg1, bec-1, vps-34, atg-7 and atg-18. Data derived from observing adults, 36 hours 
post larval L4 stage. Data were compared by unpaired t tests; 30 animals were analyzed for each experiment. Asterisks indicate a significant differ-
ence as a result from an analysis of variance (ANOVA). This analysis indicated that there are significant differences between all treatments and control, 
except for atg-7 RNAi (p < 0.001). Threshold for significance (alpha) in the t-tests was p < 0.01 using a “Bonferroni correction” for multiple corrections.



©2011 Landes Bioscience.
Do not distribute.

396	 Autophagy	 Volume 7 Issue 4

in animals with knockdown RNAi mediated against vps-34. 
Conversely, the number of GFP::SNX-1 and GFP::VPS-35 posi-
tive puncta increases in bec-1 mutants when compared to wild-
type animals. For SNX-1, the size of the puncta is larger in bec-1 
mutants. These findings are similar to those made in rme-8 
mutants,55 although bec-1 and vps-34 mutants accumulate aber-
rant MIG-14::GFP positive vacuoles. We conclude that BEC-1 
and vps-34 function in retrograde transport, possibly in con-
cert with RME-8. Since it is not known how RME-8 is recruited 
to the endosome, we hypothesize that BEC-1 and the product 
of VPS-34, PI3P, may facilitate the endosomal recruitment of 
RME-8. Further studies will be required to better understand 
the relationship between BEC-1, VPS-34 and RME-8, and the 
role of BEC-1 and VPS-34 in early endosome maturation and 
transport to the Golgi.

BEC-1 is required for cell corpse clearance. We found that 
bec-1 loss of function mutant animals display a lack of cell corpse 
clearance in the hermaphrodite gonad rather than an increase 
in the incidence of apoptosis.31 Instead, we found that there is a 
significant lack of germ cell corpse degradation in bec-1 mutant 
animals when compared to wild-type. In addition, using trans-
mission electron microscopy we do not see a major effect on 
engulfment, implying that loss of bec-1 activity does not appear 
to affect the signal from the dying cell. We cannot rule out a low-
penetrance effect, but our in vivo results contrast with the previ-
ously reported requirement for autophagy genes such as beclin 1 
and atg5 as an energy source to facilitate signaling from the dying 
cells to the phagocytic cell in embryoid bodies derived from ES 
cells.80

We also found that animals deficient in vps-34, which is 
required for RAB-5 recruitment to the nascent phagosome,71 
show an increase in the number of germ cell nuclei. The degra-
dation of cell corpses has been shown to require the sequential 
enrichment of early endosomes, late endosomes and lysosomes 
to the nascent phagosome (reviewed in ref. 81). RAB-7 and 
PI3P have been proposed to function as downstream effectors 
of the CED-1 pathway to mediate phagolysosome formation.82 
Since we showed that RAB-7::GFP as well as PI3P localization 
is not normal in bec-1 mutants, the cell clearance defect of bec-1 
mutants may also be due to the mislocalization of PI3P at the 
phagosome. Interestingly, we observed that knockdown of other 
autophagy genes by RNAi results in a similar accumulation of 
CED-1-positive engulfed germ cells in the hermaphrodite gonad. 
This result suggests that autophagosomes are also required in the 
process of phagosome maturation. Since a defect in cell clear-
ance has also been reported for retromer subunit mutants, rme-8 
and snx-1,38 at this point we do not know whether the lack of 
cell clearance defect in bec-1 mutants reflects a requirement for 
autophagy or for a bec-1-mediated retrograde transport function 
or both. This point should be addressed in future experiments.

Comparisons with mammals and yeast. In yeast, two differ-
ent Atg6/Vps30 complexes were found to function in autophagy 
and vacuolar protein sorting.19,79 The two complexes differed only 
in two proteins: Atg14 and Vps38. The complex consisting of 
Atg14, Atg6/Vps30, Vps15 and Vps34 has been shown to have 
autophagy function, and the complex consisting of Vps38, Atg6/

endosomes whereas Rab7 localizes to late endosomes. Rab5 and 
Rab7 regulate trafficking of cargo from the plasma membrane to 
the lysosomes.75

In bec-1 homozygous mutants, we found an accumulation 
of RAB-7 positive puncta structures and a decrease in RAB-7 
ring-like structures. As RAB-7 positive puncta are presumed to 
be maturing endosomes, and the ring-like structures to be late 
endosomes, our results suggest a defect prior to full maturation of 
the late endosome. In addition, we found that the membranes of 
the abnormal vacuoles seen in bec-1 mutant animals were positive 
for RAB-5, RAB-7 and LMP-1, consistent with accumulation 
of incompletely matured endosomes. In yeast and mammalian 
cells, Ypt7p and Rab7 can mediate homotypic fusion of vacu-
oles and late endosomes/lysosomes.76,77 Thus, it is possible that 
the accumulation of RAB-7 and LMP-1 positive large vacuoles 
is the result of an enhancement of homotypic fusion consistent 
with an increase in RAB-7 activity. Distorted endosomal com-
partments were also observed by electron microscopy. These data 
demonstrate that the wild-type BEC-1 activity is required for the 
endolysosomal pathway. The fact that we see a lack of PI3P local-
ization, the product of VPS-34, in the bec-1 null mutants indi-
cates that the bec-1 phenotype may be due to the mislocalization 
of PI3P on endosomes.

In this study we show that the enlarged vacuoles in bec-1 
null mutants result from a defect in maturing endocytic com-
partments. This phenotype has been previously documented for 
C. elegans intestines with defects in the recycling of endosomes 
as in rme-1 or rab-10 mutants, or when recycling is blocked by 
pharmacological agents in certain mammalian cell types.52,78 
Similar vacuoles or enlargement of endocytic compartments have 
also been observed in phosphatidylinositol phosphate kinase 3 
mutants, ppk-3, the C. elegans ortholog of the yeast PIKfyve/
Fab1p.49 In these animals, enlargement of RAB-7-positive, and 
LMP-1 positive endocytic compartments occurs.49 Thus, there 
are multiple steps in endocytosis for which disruption may result 
in enlarged endocytic compartments. However the recycling 
marker RAB-10::GFP did not localize to the bec-1 mutant vacu-
oles, and the number of RAB-10::GFP puncta was not affected 
in bec-1 mutants, suggesting that the lack of bec-1 does not affect 
the recycling of endosomes.

BEC-1 functions in the retrograde transport. Yeast Atg6/
Vps30 has been implicated in early endosome to Golgi retro-
grade transport.69,79 We found that C. elegans bec-1 function is 
also required for retromer function. We show that BEC-1 and 
VPS-34 are required to rescue MIG-14 from degradation after its 
endocytosis. Our results show that aberrant sorting of MIG-14 in 
bec-1 and vps-34 mutants is similar, although not as dramatic as 
that in rme-8 or snx-1 mutants.55 It is not known whether MIG-
14 may utilize any other alternative route of retrograte transport 
in C. elegans or in mammals.55 LMP-1 and MIG-14, two differ-
ent transmembrane cargo proteins, labeled the abnormal vacu-
oles that accumulate in bec-1 mutant intestinal cells, whereas 
hTfR::GFP did not, indicating that LMP-1 and MIG-14 require 
BEC-1 for transport, while hTfR does not.

bec-1 mutants have a marked decrease in number of RME-
8::GFP puncta expression. A similar phenotype was observed 
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[P
vha-6

::RME-8::GFP, unc-119(+)], p[snx-1::GFP::SNX-1], izEx 
[P

vha-6
::MIG-14::GFP, unc-119(+)],55 pwIs61 [GFP::cav-1, unc-

119(-)]66 and bcIs39[P(lim-7)ced-1::GFP, lin-15(+)].71

Molecular analyses. To characterize the nature of the bec-1 
transcript present in bec-1(ok700) mutant animals, total RNA 
was isolated and subjected to RT-PCR using oligo dT primers. 
Determination of the DNA sequence for the RT-PCR product 
revealed a short transcript containing exons 1–4 resulting in a 
frameshift that removes the remainder of the open reading frame 
after exon 4.

Transgenes. For rescue experiments of bec-1 mutants, a 14.0 
Kb PCR fragment was amplified using wild-type genomic DNA 
as a template. This fragment contains the entire bec-1(+) gene plus 
10 Kb of flanking 5' DNA and 970 bp of downstream 3' DNA. 
This PCR fragment was directly injected into bec-1(ok691)/nT1 
mutant animals at 40 μg/ml together with the ubiquitously 
expressed cotransformation marker pTG96 (SUR-5::GFP) at 
100 μg/ml. The rescuing BEC-1::RFP, pAR 39.1,39 was injected 
at 20 μg/ml along with the cotransformation marker pRF4 [rol-
6(d)] at 100 μg/ml, and Rol lines were established.

Endocytosis assays. To investigate endocytosis at the baso-
lateral membrane of the intestine, young adult hermaphrodites 
were injected into the pseudocoelomic space with 0.1 mg/ml 
Texas Red-conjugated BSA (TR-BSA from Sigma), as previ-
ously described in reference 50. Briefly, TR-BSA is dissolved in 
egg salts (118 mM NaCl, 48 mM KCl, 2 mM MgCl

2
, 2 mM 

CaCl
2
, 10 mM HEPES, pH 7.4). We injected TR-BSA into the 

pseudocoelomic space in the pharyngeal region of adult worms 
that were immobilized on a dried agarose pad immersed in oil. 
Injected animals were rehydrated with M9 buffer and transferred 
to seeded NGM plates. At different time points, animals were 
mounted on agarose pads with a 1–2 μl drop of M9 containing 
25 mM sodium azide to anesthetize them and view them on the 
confocal microscope. Animals were soaked in the same solutions 
to investigate endocytosis at the apical membrane.

RNA interference. dsRNA-mediated gene interference exper-
iments were performed by feeding bacteria expressing the dsRNA 
to larval L4 stage individuals, and scoring their progeny, unless 
described otherwise. L4 larvae were placed on plates containing 
NGM agar with 5 mM IPTG and HT115 (DE3) bacteria car-
rying double stranded RNA expression constructs and allowed 
to lay eggs for 24 h at 20°C, except in the case of GFP::CAV-1 
expressing animals, which were incubated at 25°C. P0s were 
transferred every day for 3 days. F1 progeny were raised in the 
plates containing dsRNA bacteria and scored as 1-day-old adults. 
To determine if there is a lack of GFP::CAV-1 degradation, the 
second generation of RNAi animals were also assayed. In all 
experiments with bec-1 and vps-34 RNAi, the accumulation of 
vacuoles was monitored as the most obvious phenotype to deter-
mine that RNAi had been successful. RNAi clones were obtained 
from the Ahringer and Vidal genomic RNAi libraries86 (a gift 
from Dr. Malene Hansen).

Epifluorescence microscopic analyses. We used a Leica 
TCS-SP5 laser-scanning confocal microscope to analyze the sub-
cellular localization of fluorescent markers of endocytic and lyso-
somal compartments as well as endocytosis markers in mutant 

Vps30, Vps15 and Vps34 was shown to be specific for vacuolar 
protein sorting, more specifically endosome to Golgi retrograde 
trafficking.69 Thus, all the subunits except for Atg14 and Vps38 
are shared between the two complexes. The counterparts for 
these two complexes had not been found in other organisms, and 
orthologs for either Atg14 or Vps38 in higher eukaryotes were 
seemingly lacking, leading to the assumption that these molecu-
lar complexes only existed in yeast. Recently, using highly sensi-
tive methods of purification, mammalian proteins were identified 
that interact with Beclin 1, the mammalian ortholog of Atg6/
Vps30. In fact, three distinct Beclin 1 complexes have now been 
described and orthologs of yeast Atg14 and Vps38 have been 
found.34,83 The human ortholog of yeast Atg14 is Atg14L, and the 
human ortholog of Vps38 has been proposed to be Uvrag, since 
Uvrag primarily localizes to late endosomes, and shows weak 
homology with yeast Vps38.35 A complex consisting of Beclin 1, 
hVps34, hVps15 and Atg14L, functions in early autophagosome 
formation. Another complex consisting of Uvrag, Beclin 1, hVps34 
and hVps15 appears to act in endosome to Golgi retrograde traf-
ficking as well as in the fusion of lysosomes and autophagosomes. 
This is consistent with our findings. A third complex consists of 
Rubicon, Uvrag, Beclin 1, hVps34 and hVps15, where Rubicon 
negatively regulates the autophagosome maturation process, as 
well as endocytic trafficking.34,83 As Rubicon protein localizes 
to endosomes and lysosomes, it may be directly involved in the 
regulation of membrane fusion processes of endosomes/lysosome 
and autophagosomes. Uvrag has the capacity to bind to the Class 
C VPS complex, which is involved in the fusion process of auto-
phagosomes and in endocytosis.84,85 In tissue culture experiments, 
the knockdown phenotypes of Atg14L and Rubicon are different, 
indicating that Beclin 1 has multiple roles in autophagy through 
the formation of different complexes. Orthologs to Uvrag and 
Rubicon have yet to be found in C. elegans by sequence homology, 
although an ortholog to Uvrag does exist in Drosophila.2 Our 
results support the idea that at least two BEC-1 complexes exist in 
C. elegans which function in autophagy and retrograde transport. 
Significant future work will be required to better understand the 
mechanisms by which BEC-1 activity functions in development, 
longevity and resistance to pathogens, and if these require BEC-1 
autophagy function or its endocytic function or both.

Materials and Methods

C. elegans strains. Standard procedures were used to culture 
C. elegans worms (Brenner, 1974). All strains were grown at 
20°C, unless otherwise stated. The wild-type C. elegans strain 
N2 and the following mutant alleles were used: LGIV, bec-
1(ok691) and bec-1(ok700) provided by the Knockout consor-
tium, unc-5(e53) jcIs1 (Is[jam-1::GFP]) (gift from T. Schedl, 
University of St. Louis). The transgenes used: pwIs50[lmp-
1::gfp unc-119(+)],46 pwIs72 [P

vha-6
::gfp::rab-5, unc-119(+)], 

pwIs87[P
vha-6

:: gfp::rme-1, unc-119(+)],47,53 pwIs170 [P
vha-

6
::gfp::rab-7, unc-119(+)]53 [P

vha-6
::gfp::rab-10, unc-119(+)], 

pwIs69 [P
vha-6

:: gfp::rab-11, unc-119(+)],53 pwIs90[P
vha-

6
::hTfR::gfp], izEx1[lgg-1

promoter
::gfp::LGG-1],27 izEx5[pAy39.1, 

bec-1
promoter

::BEC-1:: RFP],39 izEx6[pBEC-1, pTG96], 
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Apoptotic cell clearance assay. Germ cell corpses in the 
adult hermaphrodite gonads were scored under the Nomarski 
DIC microscope by their highly refractile appearance.89 A Zeiss 
ApoTome microscope equipped with Time Lapse software was 
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and wild-type animals. Images on the confocal were collected 
by a PMT (photomultiplier tube) detector, converted to Tiff for-
mat and cropped using Adobe Photoshop CS3. Quantifications 
were performed by counting punctate-positive structures in 
the wild-type and mutant intestines using Image J Software 
(National Institutes of Health). To quantify intensity of images, 
Metamorph software ver 6.3r2 (Universal Imaging) was used.

Live worms were mounted on 2% agarose pads with 10 mM 
sodium azide.87 For GFP::RAB-5, and RME-8::GFP puncta 
quantification, only structures smaller than 0.3 microns were 
counted in either wild-type or mutant animals. For MIG-
14::GFP-positive puncta quantification, only structures smaller 
than 0.2 microns were counted in either wild-type or mutant 
animals. For quantification of GFP::SNX-1 and GFP::RAB-7, 
GFP-positive puncta are counted manually. Images taken with 
the DAPI filter were used to identify broad-spectrum intestinal 
autofluorescence caused by lipofuscin-positive lysosome-like 
organelles.47,88

Electron microscopy. Animals were prepared for electron 
microscopic analysis as described previously in reference 15 and 
27. Briefly, L4 animals were packed into the metal planchette 
using an excess of bacteria to avoid any empty space surrounding 
the animals. The animals were then frozen using a Bal-Tec HPM 
010 high pressure freeze apparatus and freeze substituted in 1% 
osmium tetroxide in acetone beginning at -90°C. The samples 
were then infiltrated with epoxy resin and heat cured. These plas-
tic blocks were thin sectioned, post-stained with uranyl acetate 
and lead citrate, and then examined by electron microscopy.

Quantitation of cell corpses. The increase in the number of 
cell corpses was measured using the CED-1::GFP marker. Adult 
hermaphrodites at 36 h post-larval L4 stage animals were scored. 
Quantification of germ cell corpses in wild-type animals after 
treatment with control RNAi, unc-51/ATG1, bec-1, vps-34 and 
atg-18 RNAi animals. Data are derived from three experiments 
observing adults, 36 h post-larval L4 stage. Data were compared 
by analysis of variance (ANOVA) and five two-sample t-tests 
between control strain and the five treatments; 30 animals were 
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