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Fig. 1 The activity of EfP- on its different substrates
EfP-  was first reacted with one substrate, and then with the second one, followed by measurement of A 4s at 25°C. When it reached to the completion,
the third substrate was added to the mixture with monitoring A 4s. (a) CTH first, CU second and CTH third (EfP- +CTH+CU+CTH); CTH first, CU
second (EfP- +CTH+CU); CTH first, CTH second (EfP- +CTH+CTH) as a control. (b) CU first, CTH second and CU third (EfP- +CU+CTH+CU);
CU first CTH second (EfP- +CU+CTH); CU first, CU second (EfP- +CU+CU) as a control. (c) The relative activities of EfP-  on the second
substrates. The relative activity was defined as (the activity of substrate— induced EfP- /the activity of native EfP- )x100%. *P <0.05.
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Fig. 2 Changes in the activities of subtilisin in the presence of its different substrates
The first substrate was added to subtilisin and allowed to approach the completion. Activity was measured by recording the A 4. Products and residual
substrates were then removed from the incubated samples by four rounds of ultrafiltration (6 000 r/min, 4°C, 20 min). The second substrate was then
reacted with the induced enzyme, followed by measurements of A, (a) Activity of CTH-induced Sub (Sub™) and native subtilisin with CU. (b)
Activity of CU-induced Sub (Sub®™) and native subtilisin with CTH. (c) Activity of Sub“™ and native subtilisin with CTH. (d) Activity of Sub® and
native subtilisin with CU. (e) Activity of Sub®*™ and native subtilisin with CU. (f) Activity of Sub“™ and native subtilisin with CTH. (g) The relative
activities of subtilisins in different forms. *P < 0.05. Sub“*“™ represented subtilisin treated with CU and CTH in turn, and Sub“™ was that treated with

CTH and CU in turn.
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Fig. 3 The activities of lactate dehydrogenase on lactate then pyruvate and vice versa
(a) The activities of forward (Lac—Pyr) and reverse (Pyr—Lac) reactions at different pH values. (b) The activity of LDH on lactate after LDH first
reacted with pyruvate approaching the completion. (c) The activity of LDH on pyruvate after incubated with lactate. (d) The relative activities of LDH
on Lac then Pyr, and vice versa. Pyruvate is abbreviated in Pyr and lactate in Lac. *P < 0.05.

@ (b) ©
0.4¢ LDH + Lac 2 (
c > |
LDH™ + Pyr 0.04 £100 -
g g 251 !
< 2 LDH™+Lac § I
03} 2
LDH-+Pyr &
0.02 : : 0
0 200 400 0 200 400 Enzyme LDHLDH™ LDH LDH™
s is Substrate Pyr  Pyr Lac Lac

Fig. 4 The activities of lactate dehydrogenase after reacted with pyruvate or lactate
Assays of the forward and reverse activities of LDH were referred to Figure 3, and native LDH was used as control. (a) The reaction of LDH with lactate
in the presence of NAD"™ was allowed to approach the completion. The reaction mixture was ultrafiltered to remove the products and residual substrates
before assay of LDH on pyruvate. LDH"* represents lactate-incubated enzyme after ultrafiltered. (b) The activity of LDH™ on lactate compared with that
of native LDH. (c) Relative activities of LDH"* on pyruvate and LDH™ on lactate, respectively. *P < 0.05.
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Fig. 5 The "Induced fit-lock and key'' model for EfP- ,
EfP- and subtilisin on their different substrates
Enzymic reaction on the same substrate follows "induced fit-lock and
key" procedure. The reacted enzyme on its substrates undergoes "lock
and key" or "induced fit" followed by "lock and key" procedure. This
demonstrates that "induced fit" and "lock and key" should be different
stages in an enzymic reaction but not separative ones, where S;, S,, E', E"
and E represent substrate 1, substrate 2, S;-induced, S,-induced and

native enzyme, respectively.
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"Induced Fit-Lock and Key' Model in Enzymic Reactions”
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Abstract As described in enzymology, "induced fit" and "lock and key" models are used to explain the enzymic
specificity of substrate. Previously, authors have studied the substrate specificity of Eisenia fetida protease  (EfP- ),
showing that the interaction between this protease and its substrates underwent an "induced fit" followed by "lock
and key" model. It needs further investigating whether this model is suitable for other enzymes. Here, the reactions
of substrate-induced Eisenia fetida protease  (EfP- ), subtilisin (Sub) and lactate dehydrogenase (LDH) with
their substrates were shown. EfP-  and Sub could not recognize chromozym U (CU) (P < 0.05) after incubated
with chromozym TH (CTH) although the two proteases are natively able to react with both CTH and CU. The
reaction followed an "induced fit-lock and key" pattern. In contrast, the two proteases were still able to react with
CTH even though they have been incubated with CU. But neither earthworm protease nor subtilisin could
recognize CU after CU and CTH treatment in turn, still suggesting that the reactions followed an "induced fit and
then lock and key" procedure. Furthermore, the activity of LDH with lactate significantly decreased (P < 0.05) after
the enzyme had been incubated with pyruvate. The activity on the conversion of pyruvate into lactate was not
significantly affected by a prior incubation with lactate. This suggests that the pyruvate-induced complementary

conformation of LDH is more stable than lactate-induced conformation.

Key words Eisenia fetida protease , subtilisin, lactate dehydrogenase, lock and key, induced fit, induced
fit-lock and key model, substrate specificity
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