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ABSTRACT

Motivation: Modeling of side chain conformations constitutes an
indispensable effort in protein structure modeling, protein–protein
docking and protein design. Thanks to an intensive attention to this
field, many of the existing programs can achieve reasonably good
and comparable prediction accuracy. Moreover, in our previous work
on CIS-RR, we argued that the prediction with few atomic clashes
can complement the current existing methods for subsequent
analysis and refinement of protein structures. However, these recent
efforts to enhance the quality of predicted side chains have been
accompanied by a significant increase of computational cost.
Results: In this study, by mainly focusing on improving the speed
of side chain conformation prediction, we present a RApid Side-
chain Predictor, called RASP. To achieve a much faster speed with
a comparable accuracy to the best existing methods, we not only
employ the clash elimination strategy of CIS-RR, but also carefully
optimize energy terms and integrate different search algorithms.
In comprehensive benchmark testings, RASP is over one order
of magnitude faster (∼40 times over CIS-RR) than the recently
developed methods, while achieving comparable or even better
accuracy.
Availability: RASP is available to non-commercial users at our
website: http://jianglab.ibp.ac.cn/lims/rasp/rasp
Contact: taijiao@moon.ibp.ac.cn
Supplementary Information: Supplementary information is
available at Bioinformatics online.
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1 INTRODUCTION
Protein side chain conformation prediction or side chain packing
is a crucial step in both protein design (Dahiyat and Mayo, 1996;
Fromer et al., 2010; Jones, 1994) and protein structure modeling
(Bower et al., 1997; Holm and Sander, 1991; Rohl et al., 2004). As
such, during the last two decades, many efforts have been dedicated
to the prediction of protein side chain conformations, leading to the
development of many side chain packing programs (Canutescu et al.,
2003; DeMaeyer et al., 1997; Dunbrack and Karplus, 1993; Fromer
et al., 2010; Hartmann et al., 2007; Jiang et al., 2011; Krivov et al.,
2009; Liang and Grishin, 2002; Liang et al., 2011; Lu et al., 2008;
Mcgregor et al., 1987; Ponder and Richards, 1987; Tuffery et al.,
1991; Xiang and Honig, 2001; Xu, 2005). In general, these side chain
packing programs formulate the side chain conformation prediction
problem as a combinatorial search problem based on discrete side
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chain conformations, called rotamers. The problem usually involves
three key elements, summarized as follows:

(i) A rotamer library of discrete side chain conformations
(Dunbrack, 2002; Dunbrack and Cohen, 1997; Shapovalov
and Dunbrack, 2011). Although some approaches attempted
to model the continuous side chain conformations (Feyfant
et al., 2007; Harder et al., 2010), most of the current methods
rely on discrete rotamers, which can significantly reduce
computational expense (Peterson et al., 2004).

(ii) An energy function for rotamer selection. A number of energy
functions for side chain packing have been proposed, ranging
from simple van de Waals potential (Bower et al., 1997;
DeMaeyer et al., 1997; Vasquez, 1995) to more complicated
potentials by incorporating hydrogen bonding term (Krivov
et al., 2009), solvation term (Jacobson et al., 2002; Mendes
et al., 2001) and statistical orientation term (Liang et al., 2011;
Lu et al., 2008) to improve the prediction accuracy.

(iii) A search algorithm. The use of rotamer library leads to
the formulation of the side chain packing problem as a
combinatorial problem, which finds the best solution from all
the possible combinations constrained by side chain rotamers.
Many search algorithms have been proposed to solve the
combinatorial problem, including dead-end elimination (DEE)
(Desmet et al., 1992), simulated annealing (Lee and Subbiah,
1991), Monte Carlo (Gray et al., 2003), A* (Leach and
Lemon, 1998), integer programming (Kingsford et al., 2005),
self-consistent mean field (Lee, 1994; Mendes et al., 1999)
and graph theory-based approach (Canutescu et al., 2003;
Samudrala and Moult, 1998). The combining of these search
algorithms is critical in side chain prediction. For example,
to achieve a fast speed, SCWRL4 (Krivov et al., 2009) and
SCATD (Xu, 2005) combine DEE, branch-and-bound and
tree-decomposition search.

As summarized above, the appropriate consideration of the above
three elements is critical in developing rotamer-based side chain
packing programs. Thanks to the intensive previous efforts, the
prediction of side chain conformations has become more and more
accurate. However, the improvement of accuracy usually comes
with the increase of computational time. For example, although
the recently developed side chain packing program SCRWL4 from
Dunbrack’s laboratory and the program CIS-RR developed in our
laboratory (Jiang et al., 2011) have an improvement of ∼3% in χ
accuracy over SCRWL3, their speed is over 6 times slower than
SCRWL3, indicating the challenge in achieving both high accuracy
and high speed in the prediction of protein side chain conformations.
In this study, by carefully considering the key elements summarized
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above, we present a RApid Side-chain Predictor, called RASP, which
builds the protein side chains over one order of magnitude faster than
the best existing ones while achieving comparable accuracy.

2 METHODS
Similar to CIS-RR, RASP uses clash detection-guided side chain
optimization to alleviate atomic clashes caused by rigid rotamer
approximation. But unlike CIS-RR which couples the elimination of atomic
clashes with the process of side chain packing in an iterative search,
RASP efficiently eliminates atomic clashes after the generation of a high-
quality structure. Therefore, in RASP, we focus on (i) rapid generation of
high-quality initial structures by carefully considering the key elements of
rotamer-based side chain packing algorithms, which is described in Section
2.1 and (ii) rapid elimination of atomic clashes by relaxing those residues in
clashes, which is described in Section 2.2.

2.1 Rapid prediction of side chain conformations with
high accuracy

2.1.1 Rotamer building Rotamer dihedrals along with their probabilities
are read from a binary-formatted backbone-dependent rotamer library
(Dunbrack and Cohen, 1997) in order from highest to lowest probability
until the cumulative probability reaches 98%. Then, the coordinates of all
side chain atoms are built according to rotamer dihedrals (Parsons et al.,
2005) using standard side chain topology (Engh and Huber, 1991).

2.1.2 Energy calculation Assuming that the rotamer ri is one of the all
possible rotamers of residue i, the total energy of a protein system of N
residues is expressed as:

Etotal =
N∑
i

Elib
(
ri

)+ N∑
i

∑
j

Ebb−sc(ri,j)+
N−1∑
i=1

N∑
j=i+1

Esc−sc
(
ri,rj

)
(1)

The side chain packing problem is a combinatorial problem, which finds the
set of ri (i=1,...,N) that gives the lowest Etotal over all possible rotamers
of a residue.

Rotamer probability term, Elib(ri), takes the same form as the one used in
SCWRL4 (Krivov et al., 2009):

Elib(ri)=−waa log
p(ri,φψ)

p
(
rmax,φψ

) (2)

Given backbone dihedrals (� and �), this term expresses the relative
probability of a rotamer ri to the highest probability rotamer rmax. Scaling
factor waa is residue-type dependent (Supplementary Table S1).

Besides, three other energy terms are used to characterize the interactions
between atoms (both Ebb−sc and Esc−sc): van de Waals potential, disulfide
term and hydrogen bonding term:

Ebb−sc/sc−sc =EvdW +ESS+E[O,H] (3)

The van de Waals potential, Evdw, is adapted from the one used in OPUS-PSP
(Jain et al., 2006; Lu et al., 2008), which is formulated as follows:

EvdW
(
i,j

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

50eij if d′<0.465

eij
(
80−64.5d′) if 0.465≤d′<0.75

1.63eij

[( 1
d′

)12 −2
( 1

d′
)6

]
if 0.75≤d′<0.8929

0.99eij

[( 1
d′

)12 −2
( 1

d′
)6

]
if 0.8929≤d′<2.3

(4)

where eij =√
eiej , and ei, ej are well-depths from charmm19 (Brooks et al.,

1983). d′ =dij/Rij , dij is distance between atoms i and j. Rij is summation
of atomic radii (Supplementary Table S2) of the two atoms i and j. 1.63
and 0.99 are scaling factors to express the difference between repulsive and

Fig. 1. Hydrogen bonds between hydroxyl and carboxyl. B is the Base of
the hydrogen donor (base of hydroxyl) and D is the hydrogen donor (O atom
in hydroxyl). O is hydrogen acceptor (O atom in carboxyl) and C is its base
C atom in carboxyl. α is the angle between hydrogen acceptor, hydrogen
donor and base of the hydrogen donor; β is the angle between hydrogen
donor, hydrogen acceptor and base of the hydrogen acceptor.

attractive effect. For the repulsive term, it is capped at a maximum value of
50eij to alleviate fixed rotamer approximation.

The disulfide term, ESS , is a simplified version of the one used in SCWRL3
(Canutescu et al., 2003):

ESS =6

(∣∣d−2.06Å
∣∣+ |A1 −105◦|+|A2 −105◦|

100
+ ||χ3|−90◦|

140

)
−11.4

(5)
where d is Sγ–Sγ distance, A1 and A2 are two Sγ–Sγ–Cβ angles, χ3 is the
Cβ–Sγ–Sγ–Cβ dihedral angle. The 6, 100 and 140 are scaling factors. The
bond energy of standard disulfide takes 11.4 kcal/mol.

The hydrogen bonding term, E[O,H], only considers hydrogen bonds
between hydroxyl and carboxyl, which is formulated as follows:

E[O,H] =−1.8

√(
cos

(
α−111.5

)−cos37
)(

cos
(
β−120

)−cos47
)

(
1−cos37

)(
1−cos47

) (6)

The description of the term is illustrated in Figure 1. This term is calculated
only if the distance between an O atom in the carboxyl and the O atom in the
hydroxyl is <3.2 Å. Since no explicit hydrogen atom coordinates are needed
in this term, its calculation is relatively very fast.

In order to efficiently compute the interacting energies between residues
within a protein system, we only consider the pairs of residues that have
effective contact. A pair of residues are assumed to have effective contact if
the Cβ atom of one side chain falls within a region of a hemi-sphere centered
at the Cβ atom of another side chain (illustration of side chain in effective
contact see Fig. 2):

Pair(i,j)=contact, if d(Cβi,Cβj)<ri +rj +5Å

and ( � CαiCβiCβj >90◦ or � CαjCβjCβi>90◦)
(7)

where d(Cβi, Cβj) is the distance between the two Cβ atoms, ri, rj are radii
of side chain hemisphere of residue i and j, respectively.

To prevent a side chain from severely colliding with backbone atoms,
one rotamer is excluded when its backbone energy [Ebb−sc, second term in
Equation (1)] is 8.0 U higher than any other rotamers of the same residue.

2.1.3 Combinatorial search To achieve a fast and convergent search, we
employed a combination of DEE algorithm (Desmet et al., 1992), graph
theory-based search (Samudrala and Moult, 1998), branch-and-terminate
search (Gordon and Mayo, 1999), Monte Carlo search (Liu, 2008) and
backtrack algorithm (Tarjan, 1972). The DEE and graph-theory based search
were used by following a similar procedure used in SCWRL3 (Canutescu
et al., 2003): a simple Goldstein DEE algorithm (Goldstein, 1994) was first
used to reduce the combinatorial space, and then an interaction graph was
constructed and further divided into bi-connected components that can be
solved by branch-and-terminate search strategy. To speed up the search
process, we made two modifications described as follows:

(i) In our graph theory-based search, the graph was constructed by
connecting the residue pairs whose energy difference between any
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Fig. 2. Definition of effective contact between residues. (A) The side chain
of a residue is represented as a hemisphere, whose center is Cβ atom and
Cα-Cβ is the direction. Cm is the most remote atom on the side chain. The
radii of different side chain hemispheres (Supplementary Table S3). As seen
from Supplementary Table S3, a residue with longer side chain has longer
radius of hemisphere, derived from the training set (the longest distance from
a side chain atom to the Cβ atom of the side chain is taken as radius of the
hemisphere). (B) Case of residue pairs in effective contact or not in effective
contact. Residue A and C form a pair in effective contact when d is shorter
than 5 Å, A and B do not have effective contact.

rotamer combinations of the residue pair is bigger than a threshold of
3 kcal/mol:

Edge(i,j)=contact, if max(Esc−sc(i,j))−min(Esc−sc(i,j))>3kcal/mol
(8)

This is because of the introduction of attractive terms in RASP.
In SCWRL3, only the rotamer pairs that have repulsive effects are
considered to form ‘edges’ in the graph. While in RASP, we considered
edges for the rotamer pairs having either repulsive effects or attractive
effects. However, the introduction of attractive term led to more ‘edges’
(residue pairs in contact) in the graph, and making the graph more
complicated and difficult to solve.

(ii) Therefore, to effectively solve the bi-connected components, we used
two strategies. For the bi-connected components with a combination
number over 1015, a simulated annealing Monte Carlo is carried
out. Otherwise, the branch-and-terminate search strategy is performed
(Gordon and Mayo, 1999).

The MC search starts from a structure with all residues using the rotamer
of the lowest self energy. The acceptance probability of a new rotamer n to
replace an old rotamer o, denoted as p(o→n), is calculated as follows:

p(o→n)=exp(−
Etot(o→n)/T ) (9)

First, rotamers with low acceptance probability (p(o→n)<exp(−10)) are
eliminated. Then, it performs 100 rounds of standard Monte Carlo search with
a gradual temperature decrease from 2 to 0.02 U followed by three rounds
of greedy search.

2.2 Clash detection-guided rotamer relaxation
As defined in CIS-RR, two atoms are deemed to collide when the distance
between them is <60% the sum of their van der Waals radii. Residues with
no clashes are kept intact, others are relaxed using the CIS-RR (Jiang et al.,
2011) approach.

2.3 Training and evaluation
2.3.1 Training and parameterization The training and testing dataset were
obtained from PISCES server (Wang and Dunbrack, 2003) with resolution
≤1.8 Å, R-factor<25% and mutual sequence identity<25% (Supplementary
Table S4). After elimination of the structures with incomplete side chain,
300 structures not present in SCWRL4 test set described below were used
as training data, and the other 2412 structures as test data.

By maximizing the summation of per cent correct for χ1 and χ1+2

on the training data of 300 structures, we optimized the parameters of
individual terms [Equations (2)–(6)] including scaling factors for each term,
van de Waals radii in van de Waals potential (Supplementary Table S2),
parameters in disulfide term, hydrogen bonding term and MC search times.
The parameters of van de Waals potential [Equation (4)] were first optimized
over the training set. Then the other terms were optimized one by one using
a greedy algorithm.

2.3.2 Evaluation Two different test sets are used for evaluation of RASP
and other programs. One test set consists of 2412 protein structures described
above (see Section 2.3.1 and Supplementary Table S5). This is a very
comprehensive test set, which contains 437 393 residues, namely at least
6700 counts per residue type. The other is taken from SCWRL4 (Krivov
et al., 2009), thus called SCRWRL4 test set, which consists of 379 structures
(58 231 residues in total).

RASP and some other programs are evaluated on the above two test sets
using their respective default settings. We use two criteria to assess the side
chain packing accuracy. One is percent correct ofχ1 andχ1+2. If the dihedrals
χ1 and χ2 of a modeled side chain are within 40˚ those of the native side
chain conformation, they can be regarded to be correct (Bower et al., 1997).
The other is side chain atom root mean square deviation (RMSD), which is
computed as follows:

RMSD=
√∑N

i=1 d2

N
(10)

d is the distance between a native coordinate and the predicted one. N is the
total atom number.

As defined in CIS-RR (Jiang et al., 2011), two atoms are assumed to be in
clash if the distance between them is<60% of the sum of their van de Waals
radii taken from Rosetta program (Rohl et al., 2004), and the performance
of elimination of atomic clashes is quantified based on the number of atom
pairs in clash.

2.4 Implementation and software availability
RASP was implemented in object-oriented C++, compiled using gcc version
4 with -O3 option. It has been tested on five versions of linux platforms.
For fast computation, the pair-wise energies are stored in a 4D array for
quick indexing. The evaluation of the program was carried out on Intel
Q9550 processor. The binary executable program is freely available to non-
profit research via http://jianglab.ibp.ac.cn/lims/rasp/rasp. All datasets are
available at the same web. Commercial users should contact the investigator
for consent.

3 RESULTS

3.1 RASP has a comparable prediction accuracy but is
much faster than CIS-RR

To evaluate the performance of RASP by comparing to CIS-RR, the
two programs were tested on a comprehensive test set consisting
of 2412 high-resolution X-ray structures (see Section 2.3). The
test showed that both programs have very close performance in
prediction accuracy: 86.02% for RASP versus 85.49% for CIS-
RR for the percent correct of χ1 and 75.92% for RASP versus
75.68% for CIS-RR for the percent correct of χ1+2. Both programs
also have similar prediction performance for different residue
types (Supplementary Fig. S1, Tables S6 and S7). Moreover,
both programs can effectively eliminate atomic clashes. There
exists one pair of atoms in clash in about 4 (2412 proteins/642
clashes) protein structures modeled by CIS-RR and only in
about 5 (2412 proteins/495 clashes) protein structures modeled by
RASP. However, RASP is much faster (∼40 times) than CIS-RR.

3119

 at Institute of B
iophysics,C

A
S on N

ovem
ber 27, 2011

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[14:32 19/10/2011 Bioinformatics-btr538.tex] Page: 3120 3117–3122

Z.Miao et al.

Table 1. Comparison of RASP with some recently developed side chain
prediction programs on SCWRL4 test set

Program Time Clash χ1 (%) χ1+2 (%) RMSD (Å)

RASP 1 min 47 s 47 85.10 74.71 1.47
CIS-RR 73 min 55 s 59 84.88 74.88 1.47
SCWRL4 33 min 24 s 411 85.03 75.44 1.46
SCWRL3 5 min 8 s 1107 82.17 71.26 1.58
OPUS-Rota 26 min 33 s 623 85.03 75.05 1.43
IRECS 38 min 25 s 1201 83.56 71.74 1.66

Percent correct of χ1 is defined as the percentage of residues whose predicted χ1
dihedral is within 40◦ of the χ1 dihedral of native side chains, while Percent χ1+2
correct is defined as the percentage of residues for which both χ1 and χ2 are within
40◦ of those of native side chains.

RASP finished the prediction of all 2412 protein structures within
16 min of CPU time, namely <0.4 s per protein£¬While CIS-RR
spent 601 min on the 2412 protein structures.

3.2 Comparison of RASP with other popular side chain
modeling programs

We further compared RASP with some recently developed programs,
including CIS-RR (Jiang et al., 2011), SCWRL4 (Krivov et al.,
2009), OPUS-Rota (Lu et al., 2008) and IRECS (Hartmann et al.,
2007), on the SCWRL4 test set. As shown in Table 1, for prediction
accuracy in terms of percent correct for χ1 and χ1+2 and RMSD,
RASP is comparable to the recently developed side chain programs
(detailed data can be found in Supplementary Table S7). While for
speed, RASP is relatively much faster, being 14 times faster than
OPUS-Rota, 18 times faster than SCWRL4 and 40 times faster
than CIS-RR. Moreover, it generates fewer clashes than CIS-RR,
SCWRL4 and OPUS-Rota do.

We further investigated the distribution of prediction time by
RASP, CIS-RR, SCWRL3 and SCWRL4 on the SCWRL4 test set.
Figure 3 shows that RASP completed the predictions within 1 s for
nearly all proteins (370 out of the 379 proteins in the SCWRL4 test
set), showing significant advantage in speed over the other three
programs.

4 DISCUSSION
Determination of side chain conformations on a fixed protein
backbone plays an important role in protein structure prediction,
protein design and molecular docking. In hitherto, many methods
have been developed to predict protein side chain conformations
(Canutescu et al., 2003; DeMaeyer et al., 1997; Dunbrack and
Karplus, 1993; Fromer et al., 2010; Hartmann et al., 2007; Jiang
et al., 2011; Krivov et al., 2009; Liang and Grishin, 2002; Liang
et al., 2011; Lu et al., 2008; Mcgregor et al., 1987; Ponder and
Richards, 1987; Tuffery et al., 1991; Xiang and Honig, 2001;
Xu, 2005). Although the prediction has become more and more
accurate, the gradual improvement of accuracy usually comes with
the dramatic increase of computational cost. In this study, in order to
improve speed without at expense of prediction accuracy, we have
developed a more powerful program, called RASP. The tests showed
that RASP achieves high prediction accuracy comparable to the best
existing methods, but is much faster.

Fig. 3. Comparison of the prediction time distribution for RASP, CIS-RR,
SCWRL4 and SCRWRL3. The X-axis is the prediction time by seconds (s),
and Y -axis is the number of structures (counts) finished within a given time.

The good performance of RASP lies in its elegant integration of
the strategies used in the existing approaches, which is contributed
by three critical points discussed as follows:

One is the design of energy function to achieve both high
accuracy and high speed. Previous studies have indicated that van
der Waals potential alone is able to achieve a high accuracy in
prediction of side chain conformations (Vasquez, 1995), suggesting
the dominant role it plays in side chain packing. Although the
incorporation of other energy terms could improve the accuracy
of side chain packing, the consideration of complicated energy
terms would aggravate the computational expenses. Therefore, in
developing an effective energy function for side chain packing, all
the individual energy terms were carefully implemented for fast
speed and high accuracy. To calculate van der Waals potential, the
hydrogen atoms were not represented explicitly and their effects,
through parameterization, could be captured in the heavy atoms that
are linked to hydrogen atoms (Supplementary Table S2). As shown
in Supplementary Table S2, among the heavy atoms of the same type,
the ones with more hydrogen links have longer van de Waals radii.
For simplicity and fast computation, the effect of dihedral Cα–Cβ–
Sγ–Sγ is omitted in the disulfide term, and the hydrogen bonding
term only depends on the orientation between the hydrogen donor
and hydrogen acceptor. The careful consideration of these energy
terms led us to develop an effective energy function for side chain
packing. As demonstrated by our testing described above, RASP is
not only much faster than CIS-RR, but also is slightly better than
CIS-RR (with ∼0.2% improvement in both χ1 and χ1+2 accuracy)
(Supplementary Table S6 and S7).

The second is the use of clash detection-guided rotamer relaxation
after side chain packing process. Further elimination of the atomic
clashes in protein structures with modeled side chains can lead to
more harmonic structures. Our recently developed CIS-RR coupled
side chain packing process with the elimination of atomic clashes by
using clash detection-guided iterative search in rotamer relaxation.
Although in CIS-RR both the accuracy of side chain packing and
removal of atomic clashes can be achieved, it is time consuming.
In RASP, we uncoupled the side chain packing process and atomic
clash elimination process. The rotamer relaxation was performed on
the side chains that are involved in atomic clashes. By doing this,
we found that rotamer relaxation process in RASP can effectively
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Table 2. The effect of clash detection-guided rotamer relaxation (RR) on
the performance of RASP

RASP Time Clash χ1 (%) χ1+2 (%) RMSD (Å)

Without RR 1 min 18 s 677 85.07 74.67 1.48
With RR 1 min 47 s 47 85.10 74.71 1.47

eliminate the atomic clashes without incurring the computation
time significantly (Table 2, Supplementary Table S8). Moreover,
the elimination of atomic clashes has led to a slight increase of
prediction accuracy.

The SCWRL4 test set was used for the evaluation. Total time
for the prediction is evaluated. Clashes are those residue pairs
whose distance is <60% the summation of their van de Waals radii.
χ dihedrals within 40◦ are considered correct.

The third is the implementation of effective search algorithms. To
achieve a fast and convergent search, we designed a combinatorial
search strategy involving graph theory-based approach which
decomposed the graph of contact residue pairs to bi-connected
components (see Section 2). For a bi-connected component of
N residues, its time complexity is ∼O(mN ) (m is the average
rotamer number in a residue) for an exhaustive search like branch-
and-terminate approach, while for Monte Carlo search the time
complexity is O(m×N).

Therefore, in design of search algorithms, we used MC search
instead of the exhaustive branch-and-terminate search for a large
bi-connected component with over 20 residues. Indeed, we found
use of MC search can significantly reduce the computation time for
large proteins. Supplementary Table S9 compares the performance
of RASP using MC or not on SCWRL4 test set. As can be seen from
Supplementary Table S9, although the improvement by adding MC
is general to nearly all proteins, it varies significantly for different
proteins. Especially, for those proteins that tend to form highly
connected graphs (often occurring in large proteins of over 300
residues), MC contributes significantly to the speed improvement.

Taken together, RASP not only combines the advantages of the
existing programs in both prediction accuracy and clash elimination,
but also achieves a much faster speed. We believe RASP would be
a very useful tool for fast side chain modeling that can complement
the current existing methods in a wide range of applications.
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