














was enhanced from�3mM in its absence (Fig. 3) to�0.5mM in
its presence (Fig. 7 and supplemental Fig. S9). The chemical
shift perturbation mapping indicates that the regions of the
RBBP1 CD involved in recognition of H4K20me3 are similar in
the absence and presence of dsDNA. A subset of the interacting
regions, in particular the C terminus of the �0 strand, the loop
L01, and the N terminus of the �1 strand, shows more signifi-
cant perturbation in the presence of dsDNA, which suggests
that the interaction of H4K20me3 with this region is enhanced
by concomitant interaction with dsDNA. The results of ITC
experiments also confirmed an enhancement effect of dsDNA
on the binding of RBBP1 CDwith H4K20me3 (Fig. 7, C andD).
The KD values obtained for binding of the CD to H4K20me3 in
the absence and presence of DNAwere 6.0 
 0.4 mM and 0.4 

0.02 mM, respectively. Therefore, the ITC measurements indi-
cate a 15-fold difference in affinity, consistent with the NMR
titration results, which also indicated an order of magnitude
increase in affinity. Thus, the results of both NMR and ITC
indicate that the presence of dsDNA results in a significant
enhancement in the affinity of the RBBP1 CD for methylated
histone tails.

DISCUSSION

Of the three domains (CD, TD, PD) of RBBP1 that could
possibly bind to methylated histone tails and participate in
epigenetic regulation, our results demonstrate that only the
CD of RBBP1 is responsible for recognizing methylated his-
tone tails. The RBBP1 CD binds H4K20me3 with higher
affinity than H3 peptides or other H4 peptides with a lower

degree of methylation. Interestingly, H4K20 modification
changes are observed in both leukemia and Prader-Willi/
Angelman syndromes (3, 11), although the relationship
between binding affinity and in vivo modification changes
needs further investigation. The RBBP1 TD and PD lack the
ability to bind methylated lysine, so the functions of these
domains remain to be identified.
Chromobarrel domains generally havemuchweaker binding

affinity (� 1 mM) than canonical chromodomains (50 �M) (33).
The RBBP1 CD bindsmethylated histone tails with affinity of�
3mM,which is similar to that of theCDof Eaf3withH3K36me2
and of the Brpf1 PWWP domain with H3K36me3 (32–34). As
in the CDs ofMRG15, Eaf3, andMSL3, the RBBP1CD contains
an extra �-strand (�0), blocking the binding groove of the his-
tone peptide seen in the HP1/Pc chromodomains complexed
with histone peptides (32), which may lead to the weaker bind-
ing affinity of these chromobarrel domains. Weak affinities of
single domains for histone tails has been found in many pro-
teins and the physiological relevance can be explained by a
combination effect of multiple domains/partners to obtain
high affinity, a susceptibility to competition, as well as a
greater potential specificity through the synchronous recog-
nition of several marks (35). Besides the combination effect,
another mechanism to enhance binding affinity and speci-
ficity is to co-recognize an epigenetic marker and dsDNA
within the nucleosome, which has been observed in the case
of dsDNA and H4K20me1 co-recognization by MSL3 CD
(20). Both mechanisms may occur in the case of RBBP1. The

FIGURE 6. Mutagenesis analysis of the RBBP1 CD and trimethylated lysine interaction. 1H-15N HSQC spectra of RBBP1 CD mutants titrated with M3L are
exhibited for Y583A (A) (the M3L:protein molar ratio is from 0:1 to 15:1), Y592A (the M3L:protein molar ratio is from 0:1 to 15:1) (B), Y612A (the M3L:protein molar
ratio is from 0 to 15:1) (C), W615A (the M3L:protein molar ratio is from 0 to 12:1) (D), and Y619A (the M3L:protein molar ratio is from 0 to 18:1) (E). F, KD values
for binding of Y583A (upper panel) and Y592A (lower panel) to M3L.
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RBBP1 CD can recognize both dsDNA and methylated his-
tone tails, and dsDNA binding enhances the binding affinity
of RBBP1 CD for H4K20me3 by �15-fold. RBBP1 contains
an ARID domain which is a DNA-binding domain and may
further enhance the affinity with chromatin. Since the
dsDNA used in this study was arbitrarily selected, it is also
possible that dsDNA with a certain specific sequence may
increase the affinity even further. Besides the co-recogniza-
tion mechanism, RBBP1 utilizes its R2 domain to recruit the
mSin3A complex, which acts as a platform to bind many
chromatin-modification related proteins (36); therefore,
combination effects between the RBBP1 CD and mSin3A-
binding proteins could further enhance the affinity and spec-
ificity. RBBP1 and RBBP1L1 can also interact with each other
(11), and each contain a CD, potentially providing an addi-
tional combination effect in binding to histone tails.
CDs often show different specificity for histone peptides.

The MSL3 CD specifically recognizes H4K20me1 in favor of
previously bound DNA (20). The MRG15 CD recognizes
H3K36me2/3 but not methylated H3K4, H3K9, or H3K27
(37), whereas the Eaf3 CD recognizes H3K36me3 and
H3K4me3, and it also binds H4K20me3 with weaker affinity.

Sun et al. (32) have proposed that the C-terminal helix helps
binding of histone tails in the case of Eaf3 CD, increasing its
specificity for H3K36me3, and this binding mode is similar
for MRG15 CD. The RBBP1 CD lacks the C-terminal helix,
and exhibits similar binding affinity to Eaf3 CD. In NMR
titration experiments, peptide binding causes a small pertur-
bation of loop L01 (Gly584–Gln589) connecting �0 and �1,
and almost no perturbation of �4 and 310-helix H1 (Fig. 5, B
and C), indicating that peptide binding mainly occurs near
the aromatic cage. This is consistent with the fact that the
RBBP1 CD recognizes each of the peptides: H3K9me3,
H3K27me3, H3K36me3, and H4K20me3. Loop L23 (613–
620) may favor binding of H4K20me3 and therefore lead to
the strongest binding affinity with H4K20me3 among the
methylated peptides. DNA binding may cause some confor-
mational changes to the RBBP1 CD binding site, which may
then lead to enhanced binding to H4K20me3.
The data presented here demonstrate that the CD of RBBP1

is responsible for recognizing methylated histone tails, partic-
ularly H4K20me3. The chromatin remodeling function of the
mSin3A complex is mainly related to its enzymatic activity in
epigeneticmodification (such asHDACand demethylase activ-

FIGURE 7. The enhanced binding of the RBBP1 CD with H4K20me3 in the presence of dsDNA. A, 1H-15N HSQC spectra of the RBBP1 CD in the presence of
dsDNA during titration with H4K20me3. The spectra with CD:H4K20me3 in molar ratios of 1:0, 1:0.5, 1:1.5, 1:3.5, and 1:5.0 are in black, cyan, blue, green, and red,
respectively. B, KD values for binding of RBBP1 CD to H4K20me3 in the presence of dsDNA from NMR titration experiments. C and D, ITC results of H4K20me3
titration with RBBP1 CD in the absence (C) and presence (D) of dsDNA (CD:dsDNA � 1:1.5), respectively.
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ities), while the role of RBBP1 as a component of the mSin3A
complex is in recognition of histone codes. The structure and
histone tail recognition of the RBBP1 chromobarrel domain
presented here provides a basis for future studies to elucidate
the roles of RBBP1 in gene suppression and epigenetic
regulation.
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