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Figure 9.  Myosin-Va prepares insulin-responsive GLUT4 vesicles for fusion. (A–C) Myosin-1c (A), myosin II (B), and myosin-Va short tail (ST; C) tagged 
with mCherry were separately transfected into adipocytes together with GLUT4-EGFP, and their colocalization was examined using dual-color TIRF micros-
copy. Images displayed were taken before insulin stimulation. (D–F) mCherry-tagged myosin-1c, myosin II, and myosin-Va ST were separately transfected 
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and only the penetration depth was adjusted. The penetration depth of 
90 nm was used for TIRF imaging, and the laser was straightened up to 
acquire the epifluorescence image. All ratios were normalized to the mean 
value of the control cells. To monitor and quantify insulin-stimulated GLUT4-
EGFP and IRAP-pHluorin translocation to the PM, TIRF images were first 
taken under basal conditions, and image intensities were measured (I0 min).  
Insulin was then perfused, and TIRF images were taken over 30 min with 
an interval of 3 min. Intensities measured over time (I) are normalized with 
I0 min (I/I0 min) and plotted against the time to indicate the time course of 
GLUT4-EGFP and IRAP-pHluorin translocation to the PM.

To remove diffusive uneven background, enhance vesicular feature, 
and quantify the number of vesicles, raw images were processed as de-
scribed in the legend for Fig. S3.

Statistical analysis
Data are presented as means ± SEM unless otherwise indicated.  
A Student’s t test (unpaired, two-tailed) was used in GraphPad Prism 5 
(GraphPad Software).

Online supplemental material
Fig. S1 shows several examples of Rab proteins not overlapping with 
GLUT4. Fig. S2 compares the localization of GLUT4 and TfR in 3T3-L1 
fibroblast cells and adipocytes. Fig. S3 shows an IRAP-pHluorin vesicle fus-
ing close to a Rab4A vesicle and illustrates the algorithms applied in this 
study to quantify vesicle numbers. Fig. S4 shows the effects of Rab10QL  
expression on the insulin signaling pathway and GLUT4 distribution. Fig. S5  
shows the interaction of myosin-Va with Rab10 and Rab14. Video 2 
shows the presence of TfR in IRAP-pHluorin fusions in 3T3-L1 fibroblast 
cells. Videos 1 and 3–8 show the presence of GLUT4, TfR, Rab4A, Rab10, 
Rab14, Rab8A, and myosin-Va ST in IRAP-pHluorin fusions in 3T3-L1 
adipocytes. Table S1 summaries the localization of all candidate Rab 
proteins. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201111091/DC1.
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Figure 10.  Schematic models of GLUT4 trafficking in adipocytes. (A) In 
response to insulin stimulation, Rab10 mediates GLUT4 translocation to 
the PM via GSVs, and Rab14 does so via TfR-positive endosomal compart-
ments. Rab4A, Rab4B, and Rab8A mediate GLUT4 recycling after endo-
cytosis. (B) After being activated inside the cell, Rab10 attaches to GSVs, 
recruits myosin-Va, and releases the intracellular retention of the vesicles. 
GSVs then move along microtubules close to the PM. In the periphery, 
GSVs transition to actin filaments beneath the PM and use myosin-Va to get 
into sites on the PM, where docking and fusion machineries are located.
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