


avian H5, and the avian-specific residue Q226 is maintained. On
the basis of these findings, H16 likely binds to both the �-2,6- and
�-2,3-linked receptors, and evaluation of this likelihood should be
pursued in the near future.

Conserved hydrophobic groove for cross-reactive anti-HA2
antibodies in H16.The hemagglutinin of influenza virus is the
major target for vaccine design (50). Recently, some cross-reactive
anti-HA2 neutralizing antibodies have been identified to neutral-
ize a wide spectrum of influenza A viruses by binding to highly
conserved epitopes in the stem region of HA (5, 8, 9, 40). Among
these antibodies, FI6 has been reported to bind to H16HA (5). The
crystal structure of the FI6-09H1 complex revealed that the anti-
body targets a shallow hydrophobic groove on the F subdomain of
the HA, where the sides of the groove are formed by the residues
from the A helix of HA2 (including L38, T41, I45, and I48) and
parts of two strands of HA1 (including V40 and T318) and the
HA2 turn (including W21), encompassing residues 18 to 21 (Fig.
7A). In H16HA, due to the different conformation of the HA2
turn, the corresponding region of W21 is replaced by several hy-
drophobic residues, P15, G16, L17, and I18 (Fig. 7B). Then, W21
locates below those hydrophobic residues, close to residue K38.
Thus, a similar hydrophobic core is formed with different residue
components, a finding which explains why the FI6 antibody could
bind to H16HA.

DISCUSSION

In this study, the crystal structure of the H16 subtype HA of influ-
enza A virus was solved in its HA0 form. To our surprise, the
cleavage site that would create the HA1/HA2 complex displays an
�-helical structure and hides in the negatively charged cavity, in
contrast to the labile loop conformations found in other known
structures, and more importantly, this unusual structure is corre-

lated with its inefficient cleavage by trypsin. The inefficient cleav-
age is implicated in low pathogenicity, and early experimental
infections with H16N3 influenza virus in chickens resulted in a
limited infection and mild pathology (44), supporting this notion.
Influenza virus pathogenesis is correlated with several factors, but
the sequence of the HA cleavage site is a major determinant of
disease severity (27). For most of the HA subtypes, the cleavage
sites contain a single arginine residue (R239) that can be recog-
nized by specific extracellular trypsin-like proteases. For the
highly pathogenic H5N1 or H7N7 viruses, the cleavage sites usu-
ally contain polybasic amino acids that can be more generally
recognized by enzymes in multiple tissues, therefore causing dam-
age to multiple tissues (6). Here, we observed a relatively stable
helix structure and inaccessibility by the enzyme in the H16HA0
loop, correlating with its low pathogenicity.

Phylogenetically, there are two groups of HAs that are grouped
on the basis of their primary sequences: group 1 contains H1, H2,
H5, H6, H8, H9, H11, H12, H13, H16, and H17; and group 2
contains H3, H4, H7, H10, H14, and H15 (14). The members of
the two phylogenetic groups of HA are characterized by group-
specific structural features at sites where their sequences differ,
such as interhelix loop conformations and globular subdomain
orientations, as well as by differences in their response to com-
pounds that inhibit conformational changes and membrane fu-
sion activity (19, 33, 34). When we compared the H16HA0 struc-
ture with the previously determined HA structures of different
subtypes, we found that the H16HA0 globularsubdomain orien-
tation does not belong to either group 1 or group 2 but can sepa-
rate group 1 from group 2 as a reference protein. Previous studies
report that the H16 subtype viruses are gull specific and rarely
exist in other species. Thus, to some extent, the H16 subtype vi-

FIG 5 Different positions of key R329 residues in the cleavage site. (A to C) Electrostatic diagrams of cleavage sites show that the key R329 residue is far from the
negatively charged cavity in H3HA0 (A), R329 covers the negatively charged cavity in 18HA0 (B), and R329 is buried in the negatively charged cavity in H16HA0
(C). (D to F) Detailed interaction between the cleavage site and the negatively charged cavity and adjacent subunit in different HA0s. The cleavage site is colored
yellow in H3HA0 (D), orange in 18HA0 (E), and green in H16HA0 (F). The main residues in the negatively charged cavity are colored pink. The hydrogen bonds
are shown as black dashed lines.
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ruses may be more closely related to ancient influenza viruses. It is
possible that the HA protein of H16 subtype viruses may retain
some structural features derived from ancient influenza viruses,
while in other subtypes, the HA molecules might have evolved as a
result of adaptation to different hosts.

The first HA0 structure was determined using a mutant H3
subtype HA protein containing an R329Q substitution, derived
from the A/Hong Kong/68 virus (4). The structure of HA0 pro-
vides explanations for the correlation of precursor cleavage effi-
ciency with pathogenesis. The P-4 residue is packed against the
HA surface in the first HA0 structure and would not be accessible
for binding to a recognition site, as furin enzyme activity appears
to require. However, in some H5 and H7 subtype HAs (HA1/HA2
complex structures), four polybasic residues are inserted in the
cleavage sites, and these insertions project the site into the solu-
tion, exposing the inserted P-4 residues as a recognition site for
furin protease. The second HA0 structure was determined using
the baculovirus expression system to generate uncleaved 1918
pandemic virus HA0 protein. This 18HA0 structure displays a
different conformation of the cleavage loop, which abuts the gly-
coprotein surface instead of projecting from the surface like the
first H3 subtype HA0 structure. Due to this structural feature, the
18HA0 protein is tryptase resistant but susceptible to trypsin pro-
tease (38). Interestingly, our insect cell-derived and mammalian
cell-derived H16HA0 protein is resistant to trypsin protease under
both neutral and low-pH conditions. The key residue R329 hides
behind the helix and forms a strong salt bridge with the D441
residue in the cavity. This structural feature precludes protease
accessibility and explains why H16HA0 is resistant to trypsin pro-

FIG 6 Structural comparison of the HA receptor binding site. (Top) Electrostatic-potential maps of the head domains of the H16 structure, human H3 structure (PDB
accession number 1HA0), and avian H5 structure (PDB accession number 2FK0) were generated by the PyMOL program. The shape of the receptor binding site is
marked by a yellow circle. (Bottom) Cartoon diagrams of the receptor binding site are shown with key residues that determine the specificity. Clearly, the H16HA0
receptor binding site possesses a round cavity, whereas the H3 and H5 HAs have an oval-shaped cavity. The H5 HA has a narrower cavity than the H3 HA, which is
unfavorable for the human receptor binding. A broader cavity and avian-specific residue Q226 indicate that H16HA0 likely binds to both the human and avian receptors.

FIG 7 The conserved hydrophobic groove in H16HA0 reveals the structural
basis of binding with the broadly neutralizing antibody FI6. Surface represen-
tations of the F subdomains of 09H1 HA (A) and H16HA0 (B) with selected
side chains that contribute to the conserved hydrophobic groove are shown.
The approximate boundaries of the hydrophobic grooves are indicated by the
black lines. Although the residues contributing to the hydrophobic groove are
moderately different between 09H1 and H16, similar hydrophobic grooves
guarantee the binding potential by the FI6 antibody.
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tease. Our results provide new insight into the correlation of cleav-
age site conformation and enzyme accessibility with virus patho-
genicity.

Virus fusion and, hence, entry require cleavage of HA0 into the
HA1/HA2 form. One question was raised: how are H16 viruses are
activated and spread in gulls? We believe that two reasonable pos-
sibilities might answer the question. First, the cleavage of H16HA0
might happen efficiently, but only in highly restricted specialized
cells in the gull. Second, the cleavage of H16HA0 might happen
more broadly, but just at a very low level in all tissues. This ques-
tion remains to be answered in the future.

Three structural conformations of HA have now been defined:
the HA0 precursor, cleaved HA, and the low-pH-induced fusion-
state HA (3, 4, 49). Potential targets for antiviral compounds exist
in these conformations and their interconversion events. The
transition of HA0 to the cleaved HA1/HA2 conformation may be
blocked by inhibition of the cleavage enzymes or by the binding of
an inhibitor into the cavity revealed in the first H3 subtype HA0
structure to prevent the insertion of the fusion peptide. Wiley and
colleagues proposed that a charged peptide or mimetic might bind
in the pocket on HA0, block the formation of the cleaved HA
conformation, and, hence, block infectivity (4). According to this
strategy, our H16HA0 structure with insertion of an �-helix ele-
ment into the cavity provides a new concept for drug design; i.e.,
this �-helix element could be developed as a peptide drug active
against influenza virus infection.
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