dCAF-1-p55 is Essential for Drosophila Development and Involved in The Maintenance of Chromosomal Stability*

WU Qing-Hua1,2)**, LIU Ji-Yong1)**, CHEN Yi-Xu1), JIAO Ren-Jie1)***

(1) State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (2) University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract The chromatin assembly factor 1 (CAF-1) is a three-subunit protein complex that functions in chaperoning histone deposition. The smallest subunit of Drosophila CAF-1, dCAF-1-p55, together with the other two subunits dCAF-1-p180 and dCAF-1-p105, participates in the deposition of histone H3 and H4 onto the newly synthesized DNA. In addition to the CAF-1 complex, dCAF-1-p55 is also found in several other complexes such as NURF, PRC2 and Sin3-HDAC1 complex, suggesting that it plays multiple roles other than a histone chaperone. Here we report a new allele of dCAF-1-p55 generated by gene targeting. We show that dCAF-1-p55 loss-of-function led to developmental delay and lethality. Further investigations demonstrated that dCAF-1-p55 deficient cells exhibited defects in metaphase chromosome condensation, sister chromatids association and anaphase chromosomes segregation, which are premonitory signs of chromosome instability (CIN). Taken together, these results indicate that dCAF-1-p55 plays a role in the maintenance of chromosomal stability, likely to protect the cells from CIN and the proneness to cancer.

Key words Drosophila, dCAF-1-p55, chromosome instability, chromosome segregation, sister chromatids association

DOI: 10.3724/SP.J.1206.2012.00084

Chromosomal instability (CIN) is a type of genomic instability which refers to a consistent high rate of chromosomal gains and losses [5]. Abnormalities during chromosome segregation, including defects in chromosome cohesion, spindle assembly checkpoint (SAC), centrosome copy number, kinetochore-microtubule attachment dynamics and cell-cycle regulation, can lead to CIN [1]. As a hallmark of cancer, CIN often results in increased frequency of lagging chromosomes in the anaphase during cell division [2-4].

CAF-1, the well-known chromatin assembly factor 1, is involved in the deposition of H3/H4 onto the newly synthesized DNA. In Drosophila, dCAF-1 is a three-subunit complex containing dCAF-1-p180, dCAF-1-p105, and dCAF-1-p55 [5-7]. As the smallest subunit of dCAF-1, dCAF-1-p55 is conserved from plants to humans (MSI1-5 in plants, LIN53 in worms, and RbAp48/46 in humans). Among them, Drosophila dCAF-1-p55 shows over 84% identity with human RbAp48/46 [8]. In Arabidopsis, MSII loss-of-function leads to flowering time defect [9], while MSI4 and MSI5 have been demonstrated to play a role in the epigenetic regulation of chromatin silencing [10]. In C. elegans, mutants of lin53 show multivulva phenotype [11]. Knock-down of dCAF-1-p55 in Drosophila S2 cells alters the expression levels of dE2F2 target genes [12].

In vitro experiments showed that dCAF-1-p55 participates in CENP-A (CID in Drosophila) assembly [13-15]. The dCAF-1-p55 homolog in humans, RbAp48/46, was

*This work was supported by grants from The National Natural Science Foundation of China (31071087, 31100889) and National Basic Research Program of China (2009CB918702).

**These authors contributed equally to this work.

***Corresponding author.

Tel: 86-10-64867568, E-mail: rjiao@sun5.ibp.ac.cn

Received: February 19, 2012 Accepted: April 17, 2012
initially identified as a retinoblastoma (Rb) associated protein [16–17]. RbAp48/46 has been found to be expressed aberrantly in various cancers, including breast cancer, human primary hepatocellular carcinoma and cervical cancer[18–21].

In addition to being the smallest subunit of CAF-1, dCAF-1-p55 is also detected in several other complexes, including Nucleosome Remodeling Factor (NURF), Polycomb Repressive Complex 2 (PRC2), Sin3-HDAC1 complex and dREAM (Drosophila RBF, E2F, and Myb-interacting proteins)[8,22–24]. As a member of the WD40 family protein, dCAF-1-p55 can bind directly to histones H3 and H4 [25–28]. Some of the complexes that contain dCAF-1-p55 have been reported to function in genomic stability maintenance. Mutation of the largest subunit of CAF-1 compromises the pericentric heterochromatin maintenance[6,27]. One of the components of Sin3-HDAC1 complex, Sds3, has been shown to be required for proper pericentric heterochromatin formation and chromosome segregation[29]. Loss of RBF (as well as its mammalian homolog prB) leads to centromere dysfunction and chromosomal instability[29–31]. Moreover, dCAF-1-p55 has been found to participate in the process of CID assembly in vitro, which is crucial for proper chromatids separation[13–15]. All these studies point to a possibility that dCAF-1-p55 plays a role in the maintenance of chromosomal stability.

Recently, two groups described their dCAF-1-p55 mutants that were obtained by EMS mutagenesis and imprecise P-element excision respectively, showing that in mutants are much smaller. Chromosome spreads of control larvae, the body sizes of mutants can survive for more than 45% of the mutants can survive for more than 5 times longer than the wild type larvae. Compared with the control larvae, the body sizes of dCAF-1-p55 mutants are much smaller. Chromosome spreads of mitotic neuroblasts showed that in dCAF-1-p55 mutant cells the sister chromatids association becomes partially defective. Moreover, the frequency of lagging chromosomes at the metaphase plate increases in anaphase of dCAF-1-p55 deficient cells. Our study suggests that dCAF-1-p55 plays an important role in the maintenance of chromosomal stability during development.

1 Materials and methods

1.1 Fly stocks and genetics

Flies were raised at 25°C for all experiments. The stocks used in this study are listed below:

- y w
- y w; Sp/CyO; MKRS/TM2,y+. y w; ey-FLP; MKRS/TM2, y+. y w; hs-I-Sce I, hs-FLP, Sco/CyO
- w 111K; hs-I-Cre I, Sh/TM6B
- w; actin-Gal4
- y w; p55+/55+/TM3, Kr-GFP
- y w; p55+/55+/TM6B, Tb
- y w; UAS p55/CyO

1.2 DNA constructs

5.6 kb dCAF-1-p55 genomic fragment (2.8 kb upstream and downstream from the ATG start codon respectively) with designed modifications was cloned into the pTARG vector essentially as previously described[14–39] to get the gene targeting donor construct pTARG-p55*. The mutations were introduced by PCR with oligos (underlined are restriction sites and italic are the NotI cutting sequences which were used to replace the original ATGGTG1) listed below. The primers for the upstream 2.8 kb fragment were 5′ AAAAACTCGAGTTAAAAACCGGGAAC 3′ and 5′ GCCGCGATCCGGCCGGCTTTGCCAGGTG 3′. The primers for the downstream 2.8 kb were 5′ GCTTGAGATTGACGAGCAGTAATGGTGA 3′ and 5′ GTTCGACTAGTAGGCCA-ACAGGAGCA 3′. A NotI restriction site was used for mutation identification was generated by substituting ATGGTG1 with GCCGCCCGC(Figure 1a). Oligos used to introduce the I-SceI recognition sequence at the MfeI cutting site were 5′ AATT TGAGATTGATCAGGAGCAGTAATGGTGA 3′ and 5′ AATTATTAGGATAAACAGGAGTAAT 3′ of the used to construct pUAST-p55, cDNA fragment of dCAF-1-p55, which was retrieved by digestion of pGEX-p55 (kindly provided by Dr. J. Tyler, see reference[8] for details) with EcoR1 and XhoI, was put into the pUAST vector at the same restriction sites.

1.3 Generation of the dCAF-1-p55 mutant

The dCAF-1-p55 mutants were generated by ends-in gene targeting technique[34–40](Figure 1a). Donor transgenic flies bearing pTARG-p55* on the second chromosome were crossed to y w; hs-I-Sce I, hs-FLP, Sco/CyO flies. Heat shocks (38°C, 1 h each) were applied to the progeny for two times on the 2nd, 3rd
and 4th day respectively after egg laying. Virgins were singly crossed to y w; ey-FLP; MKRS/TM2, y + males, and the offspring were screened for targeted integration of targeting construct indicated by the y w+ marker. The targeted alleles were then crossed to w1118; hs-1-Cre I, Sb/TM6B for the reduction of two dCAF-1-p55 copies (one wild type and one mutant copy). The descendants were heat shocked at 36°C for 1 h at the third instar larval stage. y w+ males were crossed singly to y w; MKRS/TM6B, Sb to make stocks. To identify the potential mutant alleles, a pair of primers (5′ TCGACAATCTTTAGCATTGC 3′ and 5′ AACGCTGGCGATGAGTAGAT 3′) was used to amplify a 600 bp fragment. NotI digestion of the 600 bp PCR products yields two 300 bp fragments when the designed mutations are introduced into the genome. One of the alleles, designated p5515a, further confirmed by DNA sequencing for the intended mutations was molecularly characterized and used throughout this study.

To verify the expression of dCAF-1-p55 protein in p5515a mutants, Western blot analysis was carried out according to the standard procedure. Briefly, the third instar larvae with correct genotypes were collected, and proteins were extracted with radioimmunoprecipitation assay buffer (50 mmol/L Tris-HCl pH 8.0, 150 mmol/L NaCl, 1% NP-40, 0.5% sodium deoxycholate, and 1 mmol/L phenylmethylsulfonyl fluoride) and separated by SDS-10% polyacrylamide gel electrophoresis (PAGE). The antibodies used were: rabbit anti-p55 (1:5 000; a kind gift from Dr. J. Tyler) and mouse anti-β-Tubulin (1:5 000, purchased from Kwbiotech).

1.4 Statistical analysis

Homozygous mutants (y w; p5515a) were selected from y w; p5515a/TM3, Kr-GFP stock at the early embryonic stage using the GFP-marked balancer chromosome. The homologous and heterozygous animals were transferred independently into fresh medium and counted carefully at the indicated time windows (Figure 2a and 2b).

1.5 Chromosome spreads

For metaphase chromosome spreads, brains from y w and y w; p5515a homzygous third instar larvae were dissected in PBS, treated with colchicines and hypotonic solution, fixed in acetic acid/methanol/H2O (11v:11v:2v) and stained for 5 min in 0.2 g/L DAPI. Anaphase chromosome spreads were carried out in the same way without colchicine treatment. The preparations were examined and photographed with the Nikon 90i fluorescent microscope (Nikon; Tokyo, Japan).

1.6 Immunohistochemistry

The preparations of anaphase chromosome spreads were washed for three times in PBST before incubated with Rabbit anti-phosphohistone H3(Ser 10) antibody (1:100, Millipore) overnight. After three washes with PBST, FITC-conjugated anti-rabbit secondary antibody (1:100, Jackson Immunoresearch Laboratories) was used with a dilution of 1:100 for 2 h at the room temperature, followed by DAPI staining. Images were taken using a Nikon 90i fluorescent microscope (Nikon; Tokyo, Japan).

2 Results

2.1 Generation of p5515a mutants

To investigate the function of dCAF-1-p55 in vivo, we set off to generate dCAF-1-p55 mutant flies with the ends-in gene targeting technique (Figure 1a). At first, a modified ~5.6 kb dCAF-1-p55 genomic fragment was obtained by PCR. This fragment contained a replacement of the original ATGGTGG (ATG is the start codon of dCAF-1-p55 gene) with the NotI recognition sequence GCGGCCGC, and an insertion of I-SceI recognition sequence about 1 kb downstream of the ATG. The DNA fragment with intended modifications was cloned into the pTARG vector to get the gene targeting construct pTARG-p55. Through microinjection and following single crosses, we obtained the donor transgenic flies containing pTARG-p55. Taking advantage of this donor fly stock and the endonuclease I-SceI, a genetic screen helped us finally get several lines of the mutants with the translation start codon mutation and a frame shift in the coding sequence of dCAF-1-p55 gene (Figure 1a and 1b). One of the alleles, p5515a, was identified firstly by NotI digestion (Figure 1c). The 600 bp PCR products from the wild type genomic DNA could not be cut by NotI while the PCR products of the p5515a mutants were cut into two 300 bp fragments, which indicated that the designed mutations were successfully introduced into the dCAF-1-p55 gene. Subsequent sequencing results further confirmed the ATG mutation and frame shift (Figure 1b). Western blot result showed the loss of dCAF-1-p55 protein expression in p5515a homozygous mutants (Figure 1d). Together, we conclude that p5515a is a null allele of the dCAF-1-p55 gene and thus all the experiments described below were carried out with this allele.
Fig. 1 Generation and molecular characterization of the \(p^{55\,-15a} \) allele

(a) Schematic diagram of the \(dCAF-1\)-p55 genomic locus and the gene targeting strategy. The modified \(dCAF-1\)-p55 and the marker gene, mini-white, are circularized from the transgenic genome by FLP recombinase and linearized by the yeast restriction endonuclease I-SceI. Then \(dCAF-1\)-p55 locus is duplicated (one wild type and the other mutant) as a result of "ends-in" recombination of the targeting DNA and the resident \(dCAF-1\)-p55 locus. For the reduction process, the duplicated DNA is cut by another endonuclease I-Cre and then repaired by endogenous homologous recombination, which leads to a single copy of \(dCAF-1\)-p55. The mutant can be selected by the loss of white marker gene. * indicates the designed mutation at the translation start codon.

(b) Sequence alignment of the control (\(y\,w \)) and the mutant \(p^{55\,-15a} (y\,w; p^{55\,-15a}) \) flies. Note that ATGGTGG has been substituted by NotI cutting site GCGGCCGC, yielding a frame shift in the coding sequence of \(dCAF-1\)-p55.

(c) \(p^{55\,-15a} \) mutant identification by PCR in combination with NotI digestion (see Materials and methods for details). The 600 bp PCR products from the control and the \(p^{55\,-15a} \) mutants were digested by NotI. While the control 600 bp DNA is resistant to NotI (Lane 1) digestion, the PCR product of \(p^{55\,-15a} \) is cut into 300 bp fragments (Lane 2). Lane 3 is DNA ladders.

(d) Western blot analysis to detect the protein of \(dCAF-1\)-p55 expressed in wild type and the mutant of \(p^{55\,-15a} \). The 55 ku product of \(dCAF-1\)-p55 that is detected in the wild type, is absent in \(p^{55\,-15a} \)-mutants (Lane 2). β-Tubulin abundance was shown as a loading control.
2.2 dCAF-1-p55 loss-of-function leads to developmental delay and lethality

In consistence with two very recent reports\cite{32-33}, the dCAF-1-p55 homozygous mutants, p55^{7-15a}, are larval lethal and die before pupation. In order to more precisely characterize the developmental defects caused by dCAF-1-p55 loss-of-function, we separated homozygotes from heterozygous p55^{7-15a} animals at the early embryonic stage and monitored their developmental processes independently. The survival ratio of homozygous mutants decreased with time during the entire larval stage, with a sharp drop at the ninth day AEL (after egg laying). About 75% of dCAF-1-p55 homozygous mutants survived until the 8th day AEL and about 30% could survive until the 12th day AEL without pupa formation. All of the mutants eventually died before the 15th day AEL (Figure 2a and 2b). Apparently, the homozygous mutants have a much longer developing time at the larval stage than the control (heterozygous animals) (Figure 2a and 2b). Furthermore, at the same time window of development, for example 120 h AEL, the homozygous mutants are significantly smaller in size than their heterozygous siblings (Figure 2c).

![Fig. 2 dCAF-1-p55 mutation led to developmental delay at the larval stage and lethality of the pupae in Drosophila](image)

(a), (b) Survival ratio of p55^{7-15a} heterozygotes (a, as control) and homozygotes (b) throughout the development from the larval stage to the adults. The control flies exhibited a normal developmental time course (a) while all of the p55^{7-15a} mutants died before pupation with a much longer larval stage (b). (c) p55^{7-15a} mutants showed a significant developmental delay that rendered a smaller body size compared with their heterozygous siblings at 120 h AEL.

To test whether the lethality of the homozygous mutants is specifically attributed to the loss of dCAF-1-p55, we performed a rescue experiment using the GAL4-UAS system. To achieve this, a UAS-p55 transgenic fly stock was generated with the construct pUAST-p55, which contained the full length of dCAF-1-p55 cDNA. Under the control of actin-Gal4, which is expressed ubiquitously in all the cells of Drosophila, expression of UAS-p55 could successfully rescue the mutants to develop into adult flies. These results demonstrated that dCAF-1-p55 is essential for normal Drosophila development.

2.3 dCAF-1-p55 is required for proper sister chromatids association

dCAF-1-p55 is known to be involved in multiple protein complexes including those that function in DNA replication, histone deposition and chromatin remodeling\cite{8, 22-24}. To clarify whether dCAF-1-p55 plays a role in the maintenance of genome stability, we examined the metaphase spreads of neuroblasts from third instar larvae of dCAF-1-p55 homozygous mutants. The brains of the third instar larvae were treated with colchicine to arrest cells in the metaphase before stained with DAPI to identify chromosomes.
As shown in Figure 3, dCAF-1-p55 mutant cells exhibited abnormally condensed metaphase chromosomes compared with the wild-type cells. In wild type cells, the highly condensed chromosomes appeared to be short and compact in the metaphase (Figure 3a). However, in dCAF-1-p55 mutant cells, the chromosome arms were longer and more loosened than those in the controls. Moreover, abnormal sister chromatids association was also observed in the dCAF-1-p55 mutant cells, likely due to the abnormally assembled centromeres in the absence of dCAF-1-p55. Broken chromosomes could be found more frequently in dCAF-1-p55 mutant cells than in wild type cells (Figure 3b). These results suggested that dCAF-1-p55 is important for metaphase chromosome condensation and sister chromatids association, which is important for maintaining chromosomal stability.

2.4 dCAF-1-p55 is required for chromosome segregation during the anaphase

Another criterion for chromosome instability is that the anaphase cells do not distribute evenly the duplicated sets of chromosome into daughter cells during mitosis. In other words, these cells are defective in chromosome segregation. To further confirm the potential role of dCAF-1-p55 in maintaining chromosomal stability, we examined the anaphase chromosome spreads of dCAF-1-p55 mutants. In higher eukaryotic cells, the sister chromatids separate from each other and move toward the spindle poles during anaphase. Lagging chromosomes are defined as chromosomes or chromatids which still stay at metaphase plate when the cells enter anaphase. In our experiments, the mitotic cells were indicated by phosphorylated histone H3 (pH 3) (Figure 4b and 4d). Compared with the wild type animals, the dCAF-1-p55 mutants had significantly more mitotic cells that contain lagging chromosomes. Figure 4e shows the ratio of the cells that contain lagging chromosomes in the total number of anaphase cells of each brain. More than 70% of the anaphase cells of the dCAF-1-p55 mutant contain lagging chromosomes, while it is only 17% in wild type cells. This observation of increase of

Fig. 3 dCAF-1-p55 loss-of-function caused defective sister chromatids association

(a), (b) DAPI-stained metaphase spreads of neuroblasts from the third instar larvae. (a) Normal pattern of metaphase chromosomes from wild type cells. (b) Typical chromosome spreads of p55^{7-15a} mutants. A large fraction of the chromosome arms became longer than the wild type and sister chromatids were precociously separated with decondensed centromeres (arrow). The broken chromosomes could also be frequently observed in the mutant cells (arrow head).

Fig. 4 dCAF-1-p55 mutation resulted in abnormal segregation behavior of the anaphase chromosomes

(a), (b) Anaphase chromosome spreads of wild type cells showing normal segregation pattern. (c), (d) p55^{7-15a} cells exhibit defective segregation behavior of the chromosomes in anaphase. Yellow arrows indicate lagging chromosomes around the metaphase plate. The fractions of anaphase cells that contain lagging chromosomes (defective cells) in wild type cells and dCAF-1-p55 mutants are shown in (e). The numbers of brains scored for statistic analysis are indicated on the top of each column.
lagging chromosomes in the dCAF-1-p55 mutant cells is likely associated with the results of sister chromatids association defects (see 2,3 and Figure 3 for details) that were described in the last section. Together, these results demonstrated that dCAF-1-p55 is essential for the maintenance of chromosomal stability in Drosophila.

3 Discussion

dCAF-1-p55 has been shown to be a multifunctional gene whose product appears in a handful of protein complexes [8, 22-24]. However, the precise functional mechanisms of this gene remain elusive. Recently, two groups reported Drosophila dCAF-1-p55 mutants which were obtained via EMS screen and imprecise P-element excision respectively. The mutant generated by Wen and colleagues did not show any reduction of histone H3K27 tri-methylation, which is in contradiction with the report by Anderson and colleagues with another mutant[32-33]. However, both of the mutants described in their papers are leathal suggesting the essentiality of dCAF-1-p55 for Drosophila development[34-35]. In this study, we report a new allele of dCAF-1-p55 in Drosophila that were generated by gene targeting [34-40]. Mutation of dCAF-1-p55 led to animal lethality and significant developmental delay. More importantly, defects of sister chromatids association and anaphase chromosome segregation in the dCAF-1-p55 mutant cells were described here for the first time.

All the results described in our study suggest that dCAF-1-p55 may play a role in chromosomal stability maintenance. Our findings are in agreement with the following lines of facts about dCAF-1-p55. (1) As a member of the WD40 family protein, dCAF-1-p55 is involved in multiple complexes that function in histone deposition, chromatin remodeling and centromere assembly [8, 22-24]. All these complexes are important for the normal chromatin structure and genomic stability maintenance. For instance, the disruption of dCAF-1-p180, the largest subunit of dCAF-1 compromises the pericentric heterochromatin formation and/or maintenance [8, 27]. Sin3-HDAC1 is another dCAF-1-p55-containing chromatin remodeling complex, one component of which, Sds3 has been reported to control the pericentric heterochromatin-specific modifications to ensure proper pericentric heterochromatin formation and chromosome segregation[29]. (2) Mutations of the cell cycle regulating proteins, Myb and RBF, both of which interacts with dCAF-1-p55, caused defects in chromosome condensation and association[29-33]. (3) dCAF-1-p55 was found as a component of CID assembly complex (CID/H4-p55) in an in vitro experiment[13-14]. It was reported that both purified and reconstituted CID/H4-p55 are sufficient for centromeric chromatin assembly [15-16]. Therefore, we speculate that the chromatids association and segregation defects caused by dCAF-1-p55 loss-of-function may be due to an altered chromatin structure, deregulated cell cycle control and/or the failure of centromere assembly.

Chromosomal stability maintenance is important for the development of all organisms. When the stability is challenged, cells may lose or gain some of the chromosomes (or fragments of the chromosomes) of their parental cells during cell division and subsequently become aneuploid [40]. Recent studies have shown that aneuploidy and chromosomal instability(CIN) play causal role in tumorigenesis[31, 44-46]. Our studies suggest that dCAF-1-p55 loss-of-function may lead to CIN, but the possibility to cause aneuploidy still needs further investigations. Nevertheless, our results provide a potential link between dCAF-1-p55 and cancer development. This prediction is in line with the observation that altered RbAp46/48 expression levels are found in various tumor cells[10-20].

Acknowledgements We thank Dr. J. Tyler for antibodies, members of the Jiao's Laboratory and Dr. LIU Li's Laboratory for stimulating discussions, LIANG Xue-Hong for her assistance throughout the work.

References

[38] Liu J, Wu Q, He D, et al. Drosophila sbo regulates lifespan through...

