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Abstract

Brain atlases are designed to provide a standard reference coordinate system of the brain for neuroscience research. Existing
human brain atlases are widely used to provide anatomical references and information regarding structural characteristics
of the brain. The majority of them, however, are derived from one paticipant or small samples of the Western population.
This poses a limitation for scientific studies on Eastern subjects. In this study, 10 new Chinese brain atlases for different ages
and genders were constructed using MR anatomical images based on HAMMER (Hierarchical Attribute Matching Mechanism
for Elastic Registration). A total of 1,000 Chinese volunteers ranging from 18 to 70 years old participated in this study. These
population-specific brain atlases represent the basic structural characteristics of the Chinese population. They may be
utilized for basic neuroscience studies and clinical diagnosis, including evaluation of neurological and neuropsychiatric
disorders, in Chinese patients and those from other Eastern countries.
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Introduction

A greater understanding of the relationship between the human

brain anatomical structure and function is important in neurosci-

ence research [1]. In recent years, the development of human

brain atlases has provided a standard platform for the accurate

assessment of brain function and correlation to various micro-

scopic and macroscopic anatomical structures. The Talairach and

Tournoux atlas is the most commonly used human brain template,

which was developed based on postmortem sections of a 60-year-

old French female, with the slice space ranging from 3 to 4 mm

[2–4]. Brodmann’s map published in 1909 divides the cerebral

cortex into 43 regions based on cytoarchitectonic subdivisions [5–

7], and remains widely used as a neuroanatomical approach to

examine brain structural-functional correlations. Standard MNI

brain templates based on several hundred individual MRI scans

are widely used as average brain templates [3]. They are a series of

atlases made of different methods and parameters. These atlases

work for different analysis and are able to be free downloaded on

the MNI website. Furthermore, the International Consortium of

Brain Mapping (ICBM) has created a series of brain templates to

be used as standards atlases [1,4]. In Asia, a Korean brain

template based on 78 Korean normal volunteers was developed in

2005 [8]. This was an early eastern template that could represent

the brain characters of Asian population. More recently, a Chinese

brain atlas was also constructed from MRI scans of 56 Chinese

male subjects, and the results were compared to an age-matched

cohort of 35 Caucasian males [9].

The human brain is highly variable between individuals and

phenotypically different groups (e.g., age, gender and race).

Standard brain templates are therefore crucial for reducing

subject anatomical variation, providing normalized anatomical

references for individual- or population-based assessment of brain

function and structure and for the diagnosis of neurological

diseases. Although brain templates and brain atlases have been

widely used in fMRI, clinical medicine, and other neuroscience

research fields, they are not strictly designed according to different

ages, genders or other factors. Additionally, the anatomical

differences between Western and Eastern populations provide

the greatest variation, with fundamental genetic and environmen-

tal disparities resulting in overall and regional differences in brain

shape, size and volume [8–9]. Current Western templates are also

often designed from small brain samples that may not always

represent group differences in gender and age. Thus, the use of

popular templates created specifically from Western human brain

samples may result in the mislocalization of activated brain regions

measured with functional MRI [10–11], and in positional

mismatches during image-guided stereotactic neurosurgery for

Chinese patients. As such, it is critical to develop Chinese brain

templates for neuroscience research. In the present study, a set of

group-wise anatomical Chinese brain probabilistic anatomical
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atlases of different ages and genders were established using a

deformable brain registration method, HAMMER [12].

In recent years there have also been a number of probabilistic

brain atlases for pathological cohorts (e.g Parkinson’s disease,

Alzheimer’s disease, and so on). For example, template-based

brain MRI image segmentation of deep brain structures (e.g

subthalamic nucleus) of patients with Parkinson’s disease may be

preferable for MRI image analysis in these patients [13].

Probabilistic maps have also been created according to the

requirement of visualization of neurosurgery and functional brain

imaging [14]. A well-established probabilistic segmentation model

with anatomical tissue priors based on data from the Alzheimer’s

disease Neuroimaging Initiative (ADNI) enabled a new platform

for the probabilistic brain atlases [15] template-based techniques.

Various analytic methods of brain structures were also developed

to help brain disease research in these years. Therefore,

construction of high-resolution MRI-based brain structure atlases

using a large number of 3D MRI images will be highly useful in

neurosurgery as well as anatomical and functional studies of the

human brain.

Materials and Methods

Subjects
A total of 1,312 normal subjects ranging in age from 18 and 70

were recruited from 15 hospitals in China (these data were

collected through the CD-ROM or hard disk from each hospital)

for about 2 years. The participating hospitals are Affiliated

Hospitals of the key universities in China. Each subject underwent

a medical examination to exclude subjects with a lifetime history of

any neurological, psychiatric, or significant medical illnesses as

well as patients with a past history of substance abuse. All subjects

were subdivided into five age groups (18–30, 31–40, 41–50, 51–60

and 61–70 years). Each age group was further divided into two

gender groups. Ten groups of data were used to establish the

templates. The atlases were established over the course of around

1 year. This study was approved by our institutional review

committee (the ethics committee of Xuan Wu hospital, Capital

Medical Unversity), which met the guidelines of our responsible

governmental agency. Written consent was obtained from each

volunteer. This study was registered in the Clinical Trial Register

(Registration Number: ChiCTR-RNC-00000128).

Image acquisition
All volunteers underwent a whole brain scan with T1-weighted,

T2-weighted and 3D T1-weighted MP-RAGE sequences using

1.5T MR scanners (Sonata Siemens Medical Systems, Erlangen,

Germany). The parameters were: flip angle = 15u, TR/TE/

TI = 2000/4–4.5/1100 ms with 192 slices, slice thickness = 1 mm

(there is no inter-slice thickness), image field of

view = 2566256 mm2, and in-plane image resolution = 2566256,

leading to an isotropic voxel size of 16161 mm3. The imaging

time was 13 min per 3D data set. Prior to further analysis, all MR

images were exported in a conventional format and inspected by

experienced radiologists in each hospital. Subjects with any

abnormalities including brain tumors, infarctions or white matter

degeneration (i.e., diameter greater than 5 mm) were excluded

from the study. There abnormalities were identified using T1-

weighted and T2-weighted MR sequences. The researchers

developed a guidance manual and then a unified volunteer

inclusion and exclusion criteria and MRI scan parameters are

provided to ensure the uniformity of data. Out of the 1,312

images, we chose 1,000 images that met the requirements and

then subdivided them into ten groups (100 images per group).

Data preprocessing

[1] Prior to using the HAMMER algorithm to align brain images

and generate brain templates [16], raw MR images were

preprocessed using the following steps:

N Format conversion using the MRIConvert tool. Raw data

exported in DICOM-format from the Siemens Workstation

was first transformed into Analyze format with header

information.

N Brain images were reoriented to AC-PC (anterior commissure-

posterior commissure) position and further aligned to the same

brain position by MIPAV (Medical Image Processing,

Analysis, and Visualization, NIH, USA).

N For skull stripping and tissue segmentation of MR brain

images, the BET2 and FAST algorithms, respectively, were

used to obtain gray matter (GM), white matter (WM) and

ventricles (VN) via the FSL package (FMRIB Analysis Group,

Oxford, UK). The cerebellum was retained to keep the brain

intact during the HAMMER-based brain normalization

procedure.

N After skull stripping and tissue segmentation, each brain tissue

region was assigned a specific value using MIPAV according to

the requirement of the HAMMER algorithm, i.e., 250 for

WM, 150 for GM, 50 for VN and 10 for CSF.

Selection of an optimal target brain image
Before data processing, all of the brain volumes were measured

by calculating the total number of voxel in each image data using

matlab (MATLAB, the Math Works Inc, Natick, and Mass). In

each age and gender group, a brain image with a volume that

much close to the mean volume, intact brain structures and global

brain symmetry was selected to serve as an initial template. The

template for each age group was selected by two experienced

radiologists and two imaging specialists who used their expertise

and followed the morphological measurements of head compart-

ments volumetry [17–18]. During this procedure, three cross-

sectional views (axial, coronal and sagittal views) of the brain

image were displayed using MIPAV software. With reorientation

of AC-PC in the preprocessing step, the length, width and height

of each brain were able to be directly measured. These

measurements were used to select 40 subjects with the lowest

deviations from the mean image to serve as candidates for the

initial optimal target brain images. Together, the experienced

radiologists and imaging specialists then selected 20 optimal brain

images to serve as the initial templates for the 10 age and gender

groups. Two optimal brain images were chosen as the initial

template in each group. Then researchers repeated the registration

processing twice, once for each optimal brain image.

Processing
To align each image in the respective age group to a selected

template, we used a deformable registration algorithm named

HAMMER. HAMMER uses two novel strategies to improve

registration performance [15]. First, an attribute vector (i.e., a set

of geometric moment invariants (GMIs)) was defined for each

voxel in the image to reflect the underlying structural information

about the local image around that voxel. The use of an attribute

vector can help distinguish between different parts of the image

and can establish the anatomical relationship between the two

images under registration, thus reducing the possibility of being

trapped by the local minima. Second, a hierarchical registration
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strategy was used for progressively registering images. In

particular, it used the voxels with distinctive attribute vectors to

guide the initial registration. Other voxels simply followed the

registration of the distinctive voxels through interpolation of the

deformation field. As registration progressed, more and more

voxels with less distinctive attribute vectors were included to join

the registration of the images. This further refined the registration

results. By using these two novel strategies, the HAMMER

registration algorithm was able to register images with relatively

high accuracy and sharpened structural information.

With selection of the initial template, the first registration

process was done. All other brain image samples (N-1) within the

same age group were registered to this initial template. The

registration was done based on all image data within one group.

After the first registration process, the deformation fields estimated

for all brain image samples were averaged to generate an average

deformation field. This average was then used to transform the

current template to a location for generating a warped template.

This was done by hierarchically refining the displacement fields

using local and global affine transformations that were calculated

from the deformations in the template driving voxel. After the first

registration process, an individual brain image sample that was the

closest to this warped template was then selected as a new template

and the second registration procedure was repeated, as stated

above, based on all image data within a group. This procedure was

conducted until the whole process converged. By doing so, all

brain images were ultimately normalized to their geometric center,

and further averaged to generate an average brain atlas. Data

processing was repeated twice by two group members in the same

computational environment (XuanWu group and Institute of

Biophysics group).

Results

Based on the procedures described above, ten IMA formatted

atlases have been created and will soon be made available online

for free downloads. The axial views of the 10 probabilistic atlases

of human Chinese brains are shown in Figure 1. The atlases of

different ages are displayed from left to right (female atlases on the

top line, male atlases on the second line).

The size and volume of each atlas were also measured using

matlab (MATLAB, the Math Works Inc, Natick, and Mass)

programs by calculating the total number of template pixels

(Table 1). In our opinions, the total number of pixels in one atlas

represents its volume.

Additionally, the atlas of Group 1 was rigidly aligned with the

MNI template (average age, 23.464.1 years) and the brain size

and volume were compared. Differences in global features,

including shape and size, of the two atlases, are shown in Figure 2.

Comparatively, the Chinese brain templates are generally

smaller in length and height than the MNI template of the

Western society, while the width/length ratio for the average

Chinese brain is larger than the MNI brain template (Figure 2).

After generation of group atlases, parameter measurement and

analysis of each brain from the different groups was performed. It

is well established that the human brain changes with age [19–21].

Therefore, the volumes of all brains based on raw data were

further examined to assess age-related changes. A trend of

decreasing brain volume with increasing age was found (see

Figure 3). The brain volumes of males were significantly larger

than that of females (showed in panel A). The ratio of brain

volume changes according to ages was measure by calculating the

Figure 1. Axial views of 10 Chinese brain atlases of different
age and gender groups. The atlases of different ages are showed
from left to right. F, female atlases. M, male atlases.
doi:10.1371/journal.pone.0050939.g001

Figure 2. Comparison between the Chinese atlas and the MNI
atlas. Three cross-sectional figures of the MNI alas and the Chinese
atlas are shown on the left and the right, respectively. Measurement
parameters are also marked on the map.
doi:10.1371/journal.pone.0050939.g002

Table 1. Parameter measurements of 10 Chinese brain atlases of different ages and gender groups.

Group F M

1 2 3 4 5 1 2 3 4 5

Volume(cm3) 1660.023 1546.889 1504.574 1439.555 1385.483 1755.521 1681.524 1621.92 1504.884 1484.361

doi:10.1371/journal.pone.0050939.t001
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slope of the line in panel A (Fig. 3 panel B). The reduction in the

ratio of brain volume continued to increase until approximately 55

years in females and 50 years in males (showed in panel B). We

conducted a statistical analysis using a paired t-test (SPSS software,

version 14.0) to perform a group analysis. There was a significant

difference between females and males in each group (18–30, 31–

40, 41–50, 51–60 and 61–70 years) p,0.01).

Discussion

In this study, 10 new Chinese brain atlases were constructed

using MR images based on 1,312 Chinese volunteers’ ages 18 to

70 years old. Differences of brain patterns were identified with age

and gender. These series of atlases may prove to be useful standard

templates that represent brain characteristics of the Chinese

population of different ages and genders.

To develop atlases with good spatial resolution and clear

structural information, a reliable and accurate non-rigid registra-

tion algorithm termed HAMMER was employed. HAMMER is a

deformable registration algorithm of medical images that exhibits

high accuracy in superposition that hierarchically warps and

averages brain images from different subjects [15,22] (Fig. 1).

HAMMER is commonly used for analyzing images from people

with brain diseases [15,23]. The sharp boundaries of the cortices,

ventricles, white matter and grey matter regions observed in the 10

average brain templates provide further support for the benefits of

this algorithm.

So far Talairach and Tournoux atlas may be the most popular

used human brain template. The disadvantage is that the origin of

this atlas was based on postmortem sections of an old French

woman. It is an old and inactive sample. As far as the MNI

templates, these atlases are widely used in many kinds of fMRI

analysis. The comparison was also done in this study and the

results showed there indeed existed differences between MNI atlas

and Chinese brain atlases. The advantage of Brodmann’s map is

the division of 43 regions of the cerebral cortex based on

cytoarchitectonic subdivisions. This will be a future work for the

ten Chinese brain atlases to divide into more accurate anatomical

structural regions. Compared with the other two Asian templates,

the advantages of our ten Chinese Atlases cover a larger number of

samples and age-gender classification.

Although it is well known that functional differences exist

between brain regions of Eastern and Western people [24,25],

little is known regarding the underlying structural differences

[26,27]. In this study, Chinese brains were typically smaller in

length and height than Western brains based on both the atlases

and the raw data. Furthermore, volumetric brain parameters were

Figure 3. A) Brain volume changes from 18 to 70 years. X-axis, age in years. Y-axis, volume (mm3). Left, female. Right, male. The curve fitting equation
was:

F : y~ {0:0020xz1:4256ð Þ � 1:0ez006ð Þ, M : y~ {0:0022xz1:5955ð Þ � 1:0ez006ð Þ:

B) The curves represent the mean trajectory of the two equations.
doi:10.1371/journal.pone.0050939.g003

Chinese Brain Atlases of Different Age and Gender

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e50939



larger in males than females, and an age-related decline in brain

volume was observed (see Fig. 3).

One phenomenon discovered in this study was that male brain

volumes were larger than female brain volumes (Fig. 3 panel A).

This was examined by calculating every brain volume in each

participant from 18 to 70 years. Female brain volumes continue to

increase from 18 to 55 years and then rapidly decline after 55

years. Male brain volumes continue to increase from 18 to 50

years and then decline after 50 years (Fig. 3 panel B). In our study,

although the brain volumes of males are larger than those of

females, the onset of the decay of the brain volume is earlier in

males. A similar age-related deterioration of brain volume has

been previously reported [21,28–33].

Despite these 10 atlases of different age and genders, further

population-specific, group-specific and disease-specific atlases are

required for advance neuroimaging research. A potential limita-

tion of the atlases in our study is that they are static and do not

show dynamic brain changes with time, compared to dynamic 4D

probabilistic atlases. Our atlases were constructed from 1.5T MRI

scanner data, while future template construction should include

3.0T MRI data. Finally, limitations in existing registration

methods may still cause loss of detailed information in the

templates. Thus, more optimized data collection and image

processing methods are required.

In conclusion, 10 atlases representing basic brain structural

characteristics of the Asian population were developed. We suggest

that these 10 Chinese brain probabilistic atlases would provide a

more suitable basis for Chinese neuroscience studies and clinical

diagnosis than the widely used Western brain atlases, owing to the

structural differences between Chinese and Western populations.

We will continue to collect MRI data on different sub-populations

including people with different race and diseases to further

optimize these Chinese brain atlases.

Acknowledgments

Data supporting of 15 hospitals is greatly appreciated. Here are the names

of these hospitals:

Radiology Department, Beijing TongRen Hospital,

Radiology Department, Xi’an Center Hospital,

Radiology Department, West China Hospital,

Shandong Medical Imaging Research Institute,

Radiology Department, Ningxia Medical University,

Radiology Department, The First Affiliated Hospital of Shanxi Medical

School,

Radiology Department, The First Affiliated Hospital of Dalian Medical

University,

Radiology Department, Tianjin Medical University General Hospital,

Radiology Department, Tianjin Medical University Cancer Hospotal,

Radiology Department, South west Hospital,

Radiology Department, The First Affiliated Hospital of Medical School

of Zhejiang University,

Radiology Department, Wuhan Union Hospital,

Radiology Department, Jilin University China-Japan Union Hospital,

Radiology Department, The Second Affiliated Hospital of Shantou

University Medical College,

Key Laboratory of Medical Image Computing of Ministry of Education,

Northwest University.

The authors want to give our sincere thanks to Kristine Woodwar and

Sarah Vinette (native speakers) for their help to revise this paper. They are

Xing Wang’s lab colleagues in the University of Calgary.

Author Contributions

Conceived and designed the experiments: LKC CN. Performed the

experiments: CN WX. Analyzed the data: WX ZZT. Contributed

reagents/materials/analysis tools: WX ZZT XR SDG JL YZ. Wrote the

paper: WX CN.

References

1. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, et al. (2001) A probabilistic

atlas and reference system for the human brain: International Consortium for

Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356: 1293–1322.

2. Mazoyer B (2008) In memoriam Jean Talairach (1911–2007): a life in stereotaxy.

Hum Brain Map 29: 250–252.

3. Lancaster JL, Tordesillas GD, Martinez M, Salinas F, Evans A, et al. (2007) Bias

between MNI and Talairach Coordinates analyzed using the ICBM-152 brain

template. Hum Brain Map 28: 1194–1205.

4. Chau W, Mclntosh AR (2005) The Talairach coordinate of a point in the MNI

space: how to interpret it. Neuroimage 25: 408–416.

5. Toga AW, Thomason PM, Mori S, Amunts K, Zilles K (2006) Towards

multimodal atlases of the human brain. NeuroImaging 7: 952–966.

6. Brodmann K, Garey L (2006) Brodmann’s localization in the cerebral cortex:

the principles of comparative localization in the cerebral cortex based on the

cytoarchitectonics.

7. Zilles K, Amunts K (2010) Centenary of Brodmann’s map-conception and fate.

Nat Rev Neurosci 11: 139–145.

8. Lee JS, Lee DS, Kim J, Kim YK, Kang E, et al. (2005) Development of Korean

standard brain templates. J Korean Med Sci 20: 483–488.

9. Tang YC, Hojatkashani C, Dinov ID, Sun B, Fan L, et al. (2010) The

construction of a Chinese MRI brain atlas: A morphometric comparison study

between Chinese and Caucasian cohorts. NeuroImage 51: 33–41.

10. Jao T, Chang CY, Li CW, Chen DY, Wu E, et al. (2009) Development of NTU

standard Chinese brain template: morphologic and functional comparison with

MNI template using Magnetic Resonance imaging. Conf Proc IEEE Eng Med

Biol Soc 2009: 4779–4782.

11. Bang OY, Saver JL, Lee KH, Kim GM, Chung CS, et al. (2010) Characteristics

of patients with target magnetic resonance mismatch profile: data from two

geographically and racially distinct populations. Cerebrovasc Dis 29: 87–94.

12. Shen D, Davatzikos C (2002) HAMMER: Hierarchical Attribute Matching

Mechanism for Elastic Registration. IEEE Trans Med Imaging 21: 1421–1439.

13. Haegelen C, Coupe P, Fonov V, Guizard N, Jannin P, et al. (2012) Automated

segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s

disease. Int J Comput Assist Radiol Surg 18: [Epub ahead of print].

14. Sadikot AF, Chakravarty MM, Bertrand G, Rymar W, Al-Subaie F, et al. (2011)

Creation of Computerized 3D MRI-Integrated Atlases of the Human Basal

Ganglia and Thalamus. Front Syst Neurosci 5: 71.

15. Cardoso MJ, Clarkson MJ, Ridgway GR, Modat M, Fox NC, et al. (2011)

LoAd: a locally adaptive cortical segmentation algorithm. Neuroimage 56:

1386–1397.

16. Shen D, Davatzikos C (2008) HAMMER User’s Manual.

17. Liu QM (2005) Imagining measurement of the important cranial structures of

Chinese living body. Shandong University Master’s Thesis.

18. Kruggel F (2005) MRI-based volumetry of head compartments: Normative

values of healthy adults. NeuroImage 30: 1–11.

19. Bendlin BB, Fitzgerald ME, Ries ML, Xu G, Kastman EK, et al. (2010) White

matter in aging and cognition: a cross-sectional study of microstructure in adults

aged eighteen to eighty-three. Dev Neuropsychol 35: 257–277.

20. Raz N, Ghisletta, Rodrigue KM, Kennedy KM, Lindenberger U (2010)

Trajectories of brain aging in middle-aged and older adults: regional and

individual differences. Neuroimage 51: 501–511.

21. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, et al. (2010) Age-related

changes in grey and white matter structure throughout adulthood. Neuroimage

51: 943–951.

22. Shen D, Davatzikos C (2003) Very high-resolution morphometry using mass-

preserving deformations and HAMMER elastic registration. Neuroimage 18:

28–41.

23. Akhondi-Asl A, Jafari-Khouzani K, Elisevich K, Soltanian-Zadeh H (2010)

Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated

versus manual methods. Neuroimage. 54: 218–226.

24. Moriguchi Y, Ohnishi T, Kawachi T, Mori T, Hirakata M, et al. (2005) Specific

brain activation in Japanese and Caucasian people to fearful faces. Neuroreport

16: 133–136.

25. Bang OY, Saver JL, Lee KH, Kim GM, Chung CS, et al. (2010) Characteristics

of patients with target magnetic resonance mismatch profile: data from two

geographically and racially distinct populations. Cerebrovasc Dis 29: 87–94.

26. Morgan KD, Dazzan P, Morgan C, Lappin J, Hutchinson G, et al. (2009)

Differing patterns of brain structural abnormalities between black and white

patients with their first episode of psychosis. Psychol Med 40: 137–1147.

27. Sluimer JD, van der Flier WM, Karas GB, Fox NC, Scheltens P, et al. (2008)

Whole-brain atrophy rate and cognitive decline: longitudinal MR study of

memory clinic patients. Radiology 248: 590–598.

Chinese Brain Atlases of Different Age and Gender

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e50939



28. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, et al. (2010) Age-related

changes in grey and white matter structure throughout adulthood. Neuroimage
51: 943–951.

29. Kannurpatti SS, Motes MA, Rypma B, Biswal BB (2010) Neural and vascular

variability and the fMRI-BOLD response in normal aging. Magn Reson
Imaging 28: 466–476.

30. Fotenos AF, Mintun MA, Snyder AZ, Morris JC, Buckner RL (2008) Brain
volume decline in aging: evidence for a relation between socioeconomic status,

preclinical Alzheimer disease, and reserve. Arch Neurol 65: 113–120.

31. Taki Y, Kinomura S, Sato K, Goto R, Kawashima R, et al. (2009) A

longitudinal study of gray matter volume decline with age and modifying factors.
Neurobiol Aging 32: 907–915.

32. Driscoll L, Davatzikos C, An Y, Wu X, Shen D, et al. (2010) Longitudinal

pattern of regional brain volume change differentiates normal aging from MCI.
Neurology 72: 1906–1913.

33. Giorgia A, Santelli L, Tomassini V, Bosnell R, Smith S, et al. (2010) Age-related
changes in grey and white matter structure throughout adulthood. Neuroimage

51: 943–951.

Chinese Brain Atlases of Different Age and Gender

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e50939


