














lncRNAs based on ‘lnc2goSlim’ map. The details are
shown in Supplementary Figure S3–S5. All these
indicate that lncRNAs may play diverse roles in a biolo-
gical process, but collectively, lncRNAs are not likely to
have different roles at three kinds of distinct genomic loci.
Their function annotation profile is similar to that
observed for the protein-coding genes with known
function annotations.

Comparison with other methods
Computational approaches have been used in function pre-
diction for lncRNAs (4,5,6,19,20). We compare lnc-GFP
with Liao et al.’s (20) network-based method. Our method
lnc-GFP inferred candidate functions for 1625 lncRNAs in
the maximum connected component of the bi-colored
network, and only 340 lncRNAs have been functionally
characterized by Liao et al.’s method. Regarding our pre-
dicted function annotations, almost all of them are consist-
ent with, and in many cases elaborated on, Liao et al.’s
prediction results. For the details, 5776 (95.3%) of 6059
‘lnc2go’ associations predicted by Liao et al.’s hub-based
and module-based methods are consistent with
‘R1000_MCS’ by lnc-GFP. In all, 2686 (44.3%) of 6059
‘lnc2go’ associations are predicted with more specific
function categories by lnc-GFP in ‘R1000_MCS’ (e.g.
when a lncRNA is predicted with a GO term A, which is
a descendant of GO term B in the organized GO hierarchy,
it means that the function annotation—the lncRNA
annotated with GO term A, is more specific than the
function annotation—the lncRNA annotated with GO
term B). For example, the known lncRNA TK170500

(AK132348, Dlx1as) is assigned more specific functions
than that in Liao et al.’s result, such as central nervous
system projection neuron axonogenesis, brain and central
nervous system development, neuron differentiation, regu-
lation of dendrite morphogenesis, skeletal muscle fiber de-
velopment and other functions related to development and
differentiation. All of these are consistent with the report
that Dlx1as is expressed in forebrain and in regions
associated with neurogenesis in the mESCs (39).

Liao et al.’s module-based method is also re-
implemented and tested on our bi-colored network, and
237 lncRNAs are functionally annotated (P=1.0E-15).
The results are also compared with ‘R1000_MCS’. The
same observation as aforementioned is made for this com-
parison. A total of 78 (13.8%) ‘gene2go’ associations are
predicted more specifically, 466 (82.2%) are perfectly con-
sistent, 5 (0.8%) behave common ancestor GO terms and
18(3.17%) are not in ‘R1000_MCS’. The experiment
shows that lnc-GFP is superior over Liao et al.’s (20)
local network-based method. Especially for large-scale
function prediction of lncRNAs, 94.9% lncRNAs in the
network are functionally characterized by lnc-GFP in
comparison with 19.8% by Liao et al.’s method, and in
many cases, more specific functions are assigned for some
lncRNAs by lnc-GFP. In summary, we see that lnc-GFP
can predict the functions of more lncRNAs with more
accurate function annotations.

In the following, we discuss the differences between our
method and the ‘guilt by association’ method used by
other researchers (4,6,19). Their ‘guilt by association’
method is based on a local strategy and gene expression

Figure 4. LncRNAs involved in diverse GO BPs. Here, the rank denotes the rank threshold. For the given rank threshold, the number of lncRNAs
and GO BPs involved in the predicted ‘lnc2go’associations are given on the top of bars.
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data. The co-expression pattern between protein-coding
genes and lncRNAs are mined and used to functionally
characterize the lncRNAs by the functions enriched in the
co-expression pattern. Our method is based on a global
strategy and the multiple data sources, including the gene
co-expressions and the protein interactions. The global
algorithm is applied to infer putative functions for all
the lncRNAs characterized in the bi-colored network. As
a result, our method can perform large-scale function pre-
dictions for lncRNAs. In the study of Guttman et al. (4),
they found the genes neighboring lincRNAs were strongly
biased toward those encoding transcription factors and
other proteins factors related to transcription. We
examined our prediction results for the lncRNAs and
filtered out the lncRNAs functionally annotated with the
functions enriched in the neighboring genes of lincRNAs.
The filtered lncRNAs are preferred to be linked together
in the bi-colored network, forming a network module. The
same situation occurs for the protein-coding genes
annotated with these functions. The lncRNAs and the
protein-coding genes can form a larger subnetwork in
the bi-colored network. These subnetworks are shown in
Supplementary Figure S6–S8. These functional modules
may suggest the hidden functional links between the
lincRNAs and their neighboring genes.

Similar work on the function annotation is also done in
other areas, such as predicting the associations between
genes and specific traits for Arabidopsis thaliana by Lee
et al. (40). Their method scored every gene in the network
by summing network edge weights connecting that gene to
known genes in that process. Based on the scores, the top
ranked genes are considered to be associated with that
process. We re-implemented their method and applied it
to our weighted bi-colored network. The results show that
the two methods have similar performance in precision
with varying rank threshold values k 1 � k � 1000ð Þ, but
the recall of their method is inferior to that of our method
(Supplementary Figure S9). When the neighboring genes
of a gene are associated with specific traits, their method
can easily compute a score to that gene. Their scoring
scheme favor high connected genes, and usually
overlook genes whose direct neighbors are not associated
with the traits. As the method of Lee et al. (40) is
applied to infer putative functions for the lncRNAs,
only 759 lncRNAs in the network are functionally
characterized by 3063 function categories.

Verified by KEGG pathway
Inspired by the work of Cui et al. (41,42), we want to see
which non-coding RNAs could be intertwined with the
signaling networks and signaling regulation and to
further verify the obtained function prediction for the
lncRNAs by lnc-GFP. We estimate it by the analysis of
KEGG (43) pathway enrichment in the bi-colored
network. First, all the genes in the bi-colored network
are mapped to the KEGG pathways according to the in-
volvement of the genes in the KEGG pathway (43). Then,
by considering the lncRNAs with no <10 direct protein-
coding neighbors and with at least one coding neighbor
involved in some KEGG pathway, we estimate a lncRNA
involved in a KEGG pathway with the use of the

hypergeometric-distribution-based P-value of a pathway
enrichment in its protein-coding neighbors. Next, we set
the threshold for the P-value as 1.0E-5 to associate the
lncRNA with the pathway. There are 56 lncRNAs
involved in 58 KEGG pathway. The details of the
lncRNAs involved in the KEGG pathways are shown in
Supplementary Table S2. Based on the KEGG pathway
associated with the lncRNAs, we estimate the function
prediction for these 56 lncRNAs. High concordance is
observed between the KEGG pathway involvement and
the GO function prediction for the lncRNAs by lnc-GFP.
For example, the lncRNA TK4 is inferred to be involved
in T-cell receptor signaling pathway (P=1.90464E-011),
hematopoietic cell lineage pathway (P=1.89484E-010)
and primary immunodeficiency pathway (P=
3.53456E-008). Interestingly, TK4 is also predicted to as-
sociate with the function category as T-cell receptor sig-
naling pathway (rank=58) successfully by lnc-GFP. TK4
is also involved in such GO function categories as T-cell
and B-cell proliferation and differentiation, cell surface
receptor linked signaling pathway, response to inflamma-
tory and virus and immune response. All these show the
perfect consistence between the GO function prediction by
lnc-GFP and KEGG pathway enrichment analysis for the
lncRNA TK4. Another example is about the lncRNA
TK102964. It is ascribed to be involved in the neuroactive
ligand–receptor interaction pathway (P=1.14E-11),
retrograde endocannabinoid signaling pathway (P=
1.28E-9), nicotine addiction pathway (P=2.34E-11),
GABAergic (gamma-aminobutyric acid, GABA) synapse
pathway (P=1.27E-6) and morphine addiction pathway
(P=9.7E-7). lnc-GFP successfully annotated the lncRNA
TK102964 with function categories that are related to
neuron and nerve systems, which is shown in
Supplementary Table S2.

Case study: lncRNAs involved in pluripotency and
differentiation
LncRNAs have been implicated in some developmental
events of cell (44). Recently, Guttman et al. (45) per-
formed loss-of-function studies on most lincRNAs ex-
pressed in the mESCs and demonstrated that lincRNAs
have key roles in the circuitry controlling Embryo Stem
(ES) cell state. Mohamed et al. (46) identified four
mESC-expressed, conserved lncRNAs, and suggested
that these lncRNAs have potential roles in pluripotency.
We examined our function annotations for the lncRNAs
related to pluripotency and differentiation. The similarity
between the lincRNAs expressed in mESCs (45) and the
lncRNAs in our bi-colored network are computed by
Basic Local Alignment Search Tool (BLAST) (with
default parameters and E=1.0E-10) (47). The
lincRNAs similar to our lncRNAs are annotated with
the function categories related to pluripotency and differ-
entiation by lnc-GFP. For example, the lncRNA
TK119380 (AK160141), also identified as linc1609 (5), is
expressed in mESC and is involved in pluripotency and
differentiation (45). It is interesting to note that lnc-GFP
ascribes TK119380 to the related functions, including epi-
thelial cell differentiation, mammary gland alveolus devel-
opment, sinoatrial node cell differentiation and

PAGE 9 OF 13 Nucleic Acids Research, 2013, Vol. 41, No. 2 e35

 at Institute of B
iophysics,C

A
S on February 28, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/cgi/content/full/gks967/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks967/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks967/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks967/DC1
http://nar.oxfordjournals.org/


development, lateral mesodermal cell differentiation and
development, secondary heart field specification and right
lung morphogenesis. TK119380 is also found to be
characterized with positive regulation of hepatocyte dif-
ferentiation and metanephric glomerular visceral epithelial
cell development. All these suggest that TK119380 is an
important functional RNA molecule associated with the
pluripotency and differentiation of the ESC and is
implicated in diverse biological development events. The
detailed function predictions for these lincRNAs are
shown in Supplementary Table S3.
The study of Mohamed et al. (46) suggests that con-

served Oct4-activated lncRNA TK113387 (AK028326)
contributes to the regulation of mESC pluripotency and
differentiation. Another study of Blackshaw et al. (48)
shows that TK113387 was dynamically and specifically
expressed in developing and mature retinal cells. With
the method lnc-GFP, we predicted that TK113387 is
associated with related functions, such as retinal bipolar
neuron differentiation, eye photoreceptor cell fate com-
mitment, retinal rod cell development, embryo develop-
ment ending in birth or egg hatching, negative regulation
of dendrite development and negative regulation of hep-
atocyte differentiation. We also predict TK113387 to be
implicated in function categories as the development and
differentiation of neuron system, such as forebrain neuron
development, cerebellar Purkinje cell level development,
striatal medium spiny neuron differentiation and central
nervous system neuron differentiation. Our study further
confirms the argument that the lncRNA TK113387 plays
many key roles in mESCs and in developing mature retinal
cells.
We filtered out GO function terms related to mESCs

by text mining, and the lncRNAs that are ranked within
top 100 by lnc-GFP for these filtered GO terms are also
given in Supplementary Table S4. These results can give
suggestions for function investigation of the lncRNAs
that are probable to be involved in pluripotency and
differentiation.

Case study: lncRNAs related to neuronal system and
expressed in brain
Many lncRNAs have been shown to be developmentally
regulated and/or expressed in specific tissues (49). For
example, Mercer et al. (50) identified 849 lncRNAs that
are expressed in the adult mouse brain, and they found out
that the majority showed specific expression patterns in
adult mouse brain. Here, we examined our function anno-
tations for the lncRNAs characterized in the study of
Mercer et al. (50). Among the identified 849 lncRNAs
by Mercer et al., 29 lncRNAs exist in our bi-colored
network. The function annotation for 23 of these 29
lncRNAs by lnc-GFP is highly consistent with the study
of Mercer et al. For example, the three lncRNAs
TK104684 (AK032694), TK16243(AK032566) and
TK85669(AK046289) exhibit enriched expression in all
the 11 neuroanatomical regions of mouse brain, and
they are inferred to many related function terms, such as
central nervous system development, neuronal action
potential propagation, ear development, olfactory nerve
structural organization and sleep. The function

annotation for these 23 lncRNAs by lnc-GFP is
provided as Supplementary Table S5. In a subsequent
study by Mercer et al. (51), they observed that the
lncRNAs are expressed in mouse neural stem cells,
associated with neuronal and glial cell differentiation
and are expressed dynamically with modification of chro-
matin architecture. For example, they distinguished four
lncRNAs that may be involved specifically in GABAergic
neuron lineage commitment by selecting non-coding
RNAs upregulated during GABAergic neuron differenti-
ation but downreguated during oligodendrocyte differen-
tiation, and the lncRNA TK78533(AK044422) in our
bi-colored network is included. Consistently, lnc-GFP
ascribes TK78533 to be involved in diverse roles in
neuron stem cell, which are shown in detail in
Supplementary Table S6. More importantly, the
lncRNA TK78533 is high scoring ranked to function
categories such as positive regulation of oligodendrocyte
differentiation, negative regulation of synaptic transmis-
sion, GABAergic, cell–cell adhesion involved in neuronal–
glial interactions involved in cerebral cortex radial glia
guided migration, cerebral cortex GABAergic interneuron
differentiation and fate commitment and cerebral cortex
GABAergic interneuron migration. Our method lnc-GFP
also predicts the proper functions for many lncRNAs dy-
namically expressed in different stages of
oliogodendrocyte and neuronal differentiation in their
study (these lncRNAs are provided in Supplementary
Table S7, and the function annotation for these data is
available on request), and more case studies are described
in Supplementary Methods.

We also filtered out GO function terms related to mouse
brain and neurons by text mining, and the lncRNAs,
which are ranked within top 100 by lnc-GFP for these
filtered GO terms, are also given in Supplementary
Table S8. These results can give suggestions for function
investigation of the lncRNAs that are probable to be
involved in mouse brain and nervous system.

More case studies are included in Supplementary
Methods. Taken together, our study suggests that
lncRNAs may be involved in many diverse biological
functions. The prediction result of lnc-GFP may assist
further investigation of the functions of the lncRNAs.

Function prediction for homologous human lncRNAs
To enhance the general interest of the scientific community,
we try to transfer the function annotation for mouse
lncRNAs to any homologue lncRNA in human. To do
this, we search similar human lncRNAs to our mouse
lncRNAs by BLAST tool (program with BLASTN,
E� value � 1:0E� 10, with others default), the sequences
for human and mouse lncRNAs are downloaded from
NONCODE 3.0 database (downloaded on 27 February
2012). The mouse lncRNAs and human lncRNAs are
formatted as the database and another as query to
perform blastall command, respectively. A human
lncRNA is considered as a homologue of a mouse
lncRNA as the similarity from human to mouse and that
from mouse to human have an identity score no <0.9 and
e-value no >1.0E-10. Finally, 32 homologous lncRNAs in
human have been found, which are provided in
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Supplementary Table S9. Based on the function prediction
for mouse lncRNAs, the functional roles for these 32 hom-
ologous lncRNAs in human can be suggested. For
example, the human lncRNA MALAT1 is a homologue
to the mouse lncRNA TK102932 (AK141413). MALAT1
depletion resulted in aberrant mitosis, with a large fraction
of cells accumulating at G2/M boundary and increased
cell death (52). The lncRNA TK102932 was ascribed to
such function term as negative regulation of G2/M transi-
tion of mitotic cell cycle.

DISCUSSION

Although the mammalian genome encodes thousands
of lncRNAs, only a minority have been functionally
characterized in detail. Several other methods for the
function annotation of the lncRNAs have been reported,
but these have mainly been directed at cell line-specific or
tissue-specific lncRNAs (5,6,45). A network-based predic-
tion method is reported by Liao et al. (20), but only 340
of all the 1720 lncRNAs are functionally annotated.
Function prediction for the lncRNAs in these methods is
based on local function enrichment in a specific gene set.
In this work, a global network-based strategy is used for
the first time to predict probable functions for the
lncRNAs at large scale, and a function predictor
lnc-GFP is developed for lncRNAs.

A coding–non-coding bi-colored biological network is
constructed based on gene expression data and protein
interaction data, which is inspired by the construction of
coding–non-coding co-expression network in Liao et al.
(20) and many wonderful works on function prediction
for proteins (21). The advantage of bi-colored network
can be attributed to the better connectivity of the
bi-colored network than that in co-expression network.
Moreover, this may be ascribed to the exploiting of the
comprehensive interactions among different types of mol-
ecules. A few of recent studies reported comprehensive
interactions between RNAs and proteins (53,54).
Furthermore, the physical interactions between the
lncRNAs and protein complexes have been identified in
several other studies (19,55). All these findings are in
favor of the integration of coding–non-coding
co-expression data and protein interaction data to func-
tionally characterize the lncRNAs in the network. Of
course, such interaction data can also be incorporated
into the construction of bi-colored network for better
function annotations of lncRNAs.

To functionally characterize as many lncRNAs as pos-
sible in the network, we designed a global propagation
algorithm based on the bi-colored network in lnc-GFP.
In this global propagation algorithm, local and global
topological properties of every node are exploited to
infer putative functions for unannotated lncRNAs based
on the known function annotations. Among the 1713
lncRNAs in the bi-colored network, the 1625 (94.9%)
lncRNAs in the maximum connected component are all
functionally characterized. The prediction results for the
lncRNAs show that they involve in diverse biological
functions, but lncRNAs are not likely to have different

roles relative to the three kinds of distinct genomic loci.
The results also show that lnc-GFP can infer more specific
functions for much more lncRNAs than other methods.
The function annotations for many lncRNAs highly
match those in the known literature, especially the
lncRNAs expressed in ESCs and neuronal cells.
Although a global network-based strategy is successfully

exploited in lnc-GFP for function annotations of
lncRNAs, our method can be improved in the following
directions. First, it is limited to the lncRNAs, which can be
characterized in the bi-colored network. Further expand-
ing the bi-colored network to embrace more reliable inter-
actions between lncRNAs and other molecules may
increase the power of lnc-GFP. As for exploiting gene
expression data in our method, it should be considered
that when different expression data sets by other studies
or a small part of our expression data sets are used, how
will be the final bi-colored network and the function pre-
diction performance? According to other studies of
co-expression among genes (23,56), they consider the two
genes are co-expressed in at least three data sets. In our
method, ‘3’ is also used to construct the co-expressions
among the genes. To construct reliable co-expression rela-
tions among genes, the number of data sets used to con-
struct the reliable co-expressions should not be too small.
To further investigate the influence of the number of micro-
array data sets used in our method, we simulate it using
only a small fraction of all 34 data sets in our method by
randomly removing a fraction of co-expressions in our
original co-expression relations. To do this, we randomly
removed 1/10, 2/10, 3/10, 4/10 and 5/10 co-expression re-
lations among all the genes from original weighted
co-expressions and then constructed the corresponding
bi-colored networks. Based on these bi-colored networks,
we evaluated the performance of our method. These tests
are performed on five different sets of randomly chosen
protein-coding genes. And the average precision and
recall are computed to evaluate the performance of our
method, which are shown in Supplementary Figure S10.
When lnc-GFP is applied in the bi-colored network with
a fraction of co-expression removed, the performance
drops slightly in comparison with that in original
bi-colored network. It can be concluded that: (i) when
only a small fraction of all 34 data sets are used, the final
co-expression network becomes smaller and sparser than
before; and (ii) the function prediction performance will
drop slightly. These can be attributed that the bi-colored
network becomes smaller and sparser and includes more
disconnected small components than before, and all these
will not be helpful in the information flow of the network.
As for exploiting other data sources, we suggest that the
ongoing discovery of interactions between lncRNAs and
other biological molecules are valuable for the study of
lncRNAs, including the function prediction. Second, in
this work, not only a function predictor is provided but
also an open computational framework is given. As a
result, a simple global propagation method is applied.
Other network-based prediction algorithms should be
incorporated to acquire a better performance with a low
false positive rate. Third, the GO (28) function categories
are used to annotate the lncRNAs in the network, the
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co-relation among the GO terms may lead to the co-related
function annotations for the lncRNAs. The function clas-
sification for lncRNAs is not feasible based on these
co-related function annotations currently. And other
function labels should be characterized for the lncRNAs
in the future.
Taken together, based on a global network-based

strategy, our global function predictor lnc-GFP illustrates
well the power in function prediction of lncRNAs. It is
expected that by computational function prediction and
knock-out experiments at the same time (6), the two
benefit each other and facilitate the study of lncRNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–9, Supplementary Figures 1–10,
Supplementary Methods and Supplementary References
[6,20,26,27,39,49,51,57–61].
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