


sistent CD146 ORF construct (open reading frame without 3=
UTR). These findings indicated that miR-329 inhibited endo-
thelial cell function mainly through targeting of CD146.

To explore the potential role of miR-329 in angiogenesis in
vivo, we performed a Matrigel plug assay in SCID mice, using a
HUVEC line that we transfected with either miR-329, anti-miR-
329, or control miRNA. Six days postimplantation, endothelial
cells formed capillary networks in the explants, and blood vessels
were counted after immunohistochemistry using the endothelial
marker CD31. Consistent with our in vitro experiments, we found
that inhibition of miR-329 by anti-miR-329 resulted in more ves-
sel lumen formation in the Matrigel plugs (Fig. 5E), while ectopic
expression of miR-329 significantly impaired the blood vessel for-
mation in response to proangiogenic factors (Fig. 5F). Taken to-
gether, these data indicate that miR-329 functions as an angiogen-
esis suppressor both in vitro and in vivo.

miR-329 inhibits retinal neovascularization in an OIR
mouse model.To further address the role of miR-329 during

pathological angiogenesis in vivo, we employed a murine model of
oxygen-induced retinopathy (OIR), a widely used pathological
neovascularization model (36). In this model, mouse pups at post-
natal stage day 7 (P7) were exposed to 75% oxygen incubation and
were then transferred to room air at P12 to induce retinal ischemia
(Fig. 6A). From P12 to P17, proangiogenic factors, including
VEGF and TNF-�, were produced in greatly increased amounts,
causing severe pathological retinal vascular growth at P17 (4, 37).
To investigate the correlation of CD146 and miR-329 expression
under pathological conditions in vivo, we analyzed their expres-
sion in normal and OIR-affected retinas, using quantitative real-
time PCR. Importantly, we observed significantly elevated levels
of CD146 mRNA, correlating well with the observed decrease of
miR-329, when comparing the OIR retinas at P17 with both OIR
retinas before ischemia induction at P12, as well as with normal
retinas at P17 (Fig. 6B). These inversely correlated levels of miR-
329 and CD146 suggest a regulatory role of miR-329 for CD146
expression in vivo.

FIG 5 miR-329 suppresses angiogenesis. (A) The migration capability of HUVECs was measured using a Transwell system after HUVECs were transfected with
anti-miR-329 or cotransfected with CD146 siRNA. The migrated cells were counted by Image J software and are represented in the graph below. (B) Tube
formation was analyzed after HUVECs were transfected with anti-miR-329 or cotransfected with CD146 siRNA. The quantification of the tube length was done
by Image Pro Plus software and is presented in the histogram below. (C and D) VEGF- and TNF-�-induced cell migration (C) or tube formation (D) was
measured after HUVECs were transfected with miR-329 or cotransfected with the CD146 ORF (open reading frame without 3= UTR). The number of migrated
cells or the length of the vessels was measured from 3 independent assays. (E and F) Matrigel plugs containing HUVECs transfected with anti-miR-329 (E) or
miR-329 (F) were implanted in SCID mice. The microvessel formation in the explants was analyzed after immunostaining with anti-CD31 antibody. The average
vessel number in each section of Matrigel plugs was quantified by Image J software (n 	 5). The bar represents 50 �m. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
Error bars represent SD. Data are representative of at least three experiments.
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In order to evaluate the antiangiogenic properties of miR-329
in vivo, miR-329 or control miRNA was injected intravitreously
into the eyes of the OIR mice at P12, and the retinas were isolated
at P17 for analysis (Fig. 6A). The downregulation of mouse CD146
by miR-329 was observed in the blood vessels of injected OIR
retinas (Fig. 6C), once more confirming the negative effect of
miR-329 on CD146 in vivo. Next, to assess the retinal vasculature
treated with miR-329, flat-mounted retinas were perfused with
fluorescein isothiocyanate (FITC)-dextran and observed by fluo-
rescence microscopy. Interestingly, miR-329 treatment signifi-
cantly reduced the area of neovascularization tufts (
40%) and
also suppressed the formation of tortuous and dilated vessels, thus
preserving a better structure of the retinal vasculature, although
there was no significant difference in the area of vaso-obliteration
(Fig. 6D). Histological analysis also showed that miR-329 signifi-
cantly reduced the number of vessels in the retinas and the mi-
grated vessels to the vitreous cavity. In contrast, eyes injected with
control solution or control miRNA exhibited abundant longitu-
dinal migrating vessels (Fig. 6E and F). Overall, these results indi-
cate the potential therapeutic efficacy of miR-329 in pathological
retinal angiogenesis.

DISCUSSION

Although CD146 has been known to play a critical role in angio-
genesis for some time (38), the exact mechanism of how CD146
expression is regulated during angiogenesis is still poorly under-
stood. In the present study, we identified a novel angiomiR, miR-
329, as a negative regulator of endothelial CD146 and suppressor
of CD146-mediated angiogenesis. This conclusion about the role
of miR-329 is supported by several lines of evidence. First, we
provide in vitro and in vivo experimental results indicating that
miR-329 directly downregulates CD146 levels. This regulation of
CD146 was shown to be through direct binding of miR-329 to two
specific binding sites within the 3= UTR of the CD146 mRNA.
Overexpression of miR-329 inhibited CD146 mRNA and protein
levels, while inhibition of endogenous miR-329 by an anti-miR-
329 resulted in increased levels of CD146. Our in vivo experiments
also suggest that miR-329 can downregulate CD146 expression in
retinal blood vessels of mice. Second, we have demonstrated that
miR-329 expression can be regulated by proangiogenic factors.
The reciprocal expression of miR-329 and CD146 was observed
not only in activated endothelial cells but also in neovascularized
retinas. We found that in response to VEGF and TNF-�, miR-329

FIG 6 miR-329 inhibits retinal neovascularization in an OIR mouse model.
(A) Schematic representation for OIR induction and miR-329 injection. Mod-
ified miR-329, control miRNA (miR ctrl) (5 �g, respectively), or control so-
lution (0.9% NaCl) was injected intravitreously in the OIR mice at postnatal
day 12 (P12). Retinal samples were collected at P17 for RNA isolation, flat
mount staining, and immunohistochemical analysis. (B) Real-time PCR anal-
ysis of the endogenous CD146 and miR-329 expression in the retinas of nor-
mal or OIR mice at P12 and P17. GAPDH or U6 was used as an internal
control. CD146/GAPDH or miR-329/U6 was normalized to that of normal
retinas at P12 (n 	 8 to 14). (C) The expression of endothelial CD146 in the
normal retinas and in OIR retinas treated with control solution, control
miRNA, or miR-329 (5 �g) was measured at P17. The relative fluorescence

density of CD146/CD31 was analyzed in the confocal images of panel E using
Image Pro Plus software (n 	 5). (D) Flat-mounted retinas under indicated
treatments were perfused with FITC-dextran and observed by fluorescence
microscopy to assess retinal vasculature (green) at P17. Images were processed,
and the areas of vaso-obliteration (VO) (yellow) and neovascularization (NV)
(red) were added by using Adobe PhotoShop 7.0 software. The ratios of VO or
NV to total retinal area were quantified and are presented in the graphs below
(n 	 8). The bar represents 500 �m. (E and F) The vascularization of the
retinas in normal or OIR mice treated as indicated was analyzed by immuno-
fluorescence. Staining of blood vessels was performed with anti-CD146 anti-
body (red) and anti-CD31 antibody (green). Nuclei were stained with DAPI
(blue). The numbers of vessels in the inner retinas (ganglion cell layer [GCL]
and inner nuclear layer [INL]) (E), and the migrated vessels to the vitreous
cavity (F) were quantified (CD31 positive) and are presented in the histograms
(9 to 14 mice per group). Arrows show longitudinal and transverse aberrant
microvessels. VC, vitreous cavity. The bar represents 50 �m. NS., not signifi-
cant, *, P � 0.05; **, P � 0.01; ***, P � 0.001. Error bars represent SD. Data are
representative of at least three experiments.
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was downregulated by NF-�B signaling, a process that resulted in the
elevation of CD146. Third, when targeting CD146, miR-329 dimin-
ished VEGF-induced SKF/p38 MAPK/NF-�B activation as well as the
expression of multiple angiogenic genes, including the VEGF,
ICAM-1, IL-8, and MMP-9 genes. Importantly, miR-329 inhibited
endothelial cell migration and tube formation in vitro and repressed
the blood formation in Matrigel plugs in vivo. Conversely, inhibition
of miR-329 resulted in the promotion of angiogenesis. Finally, miR-
329 significantly protected against pathological angiogenesis in a
mouse model of oxygen-induced retinopathy. Based on all these find-
ings, we propose a role for miR-329 as an angiogenesis suppressor by
way of direct targeting of CD146 (Fig. 7).

CD146 is known to be aberrantly upregulated in vascular dis-
orders. Previously, it has been shown that CD146 overexpression
is regulated at the level of transcription in certain tumor cells. For
instance, dysregulated CD146 gene transcription appears to occur
via epigenetic modifications and binding of transcription factors
to its promoter sequence (39, 40). Here, we reveal for the first
time, the importance of sequences other than the promoter,
namely, the 3= UTR of the CD146 mRNA for its regulation in the
endothelial system. We propose that this regulatory point could
provide a novel potential therapeutic route for targeting patho-
genic angiogenesis. In particular, our results indicate that miR-
329 regulates CD146 expression through direct binding to its 3=
UTR. Moreover, the levels of CD146 appear to be under the com-
binatorial control of the VEGF and TNF-� signaling pathways,
which through activation of NF-�B signaling suppress miR-329.
This, in turn, results in the accumulation of CD146, creating a
positive-feedback loop crucial for promoting a proangiogenic mi-
croenvironment. This may help to explain the observed correla-
tion between an increase in CD146 expression and pathological
angiogenesis. Our findings indicated that miR-329 plays an im-
portant role in the VEGF- and TNF-�-induced CD146 expres-
sion. However, alternative pathways may also be involved in the
regulation of CD146. In support of this assumption, our screening
data (see Table S2 in the supplemental material) suggest that ad-
ditional miRNA candidates, such as miR-221, miR-632, and miR-

143, may play a part in inhibiting endothelial CD146 expression.
Understanding the precise function of these miRNAs warrants
future investigation.

Although increasing evidence indicates the important role miRNAs
play in angiogenesis, the exact targets and function of only a few
miRNAs have been identified in the endothelium so far (21). In
addition, most of these angiomiRs are reported as positive effec-
tors for angiogenesis, such as miR-27a/b, miR-296, and miR-130a
(21, 23, 41, 42). In this study, we identified miR-329 as a new
member of the angiomiR family that negatively regulates angio-
genesis. Gain- and loss-of-function experiments showed that
miR-329 regulated many aspects of endothelial cell activities, in-
cluding capillary network formation, cell migration, and organi-
zation of the cytoskeleton. In concordance with these results,
overexpression of CD146 enhanced angiogenesis, rescuing the
miR-329 gain-of-function phenotype, whereas knockdown of
CD146 impaired angiogenesis and reversed the miR-329 loss-of-
function phenotype in endothelial cells. These results indicated
that CD146 plays a major role for the antiangiogenic function of
miR-329.

We hypothesize that miR-329 inhibits angiogenesis by sup-
pression of multiple functions of CD146. CD146 is a coreceptor
for VEGFR-2 (15); thus, miR-329-mediated knockdown of
CD146 could impair VEGF-induced signaling and angiogenesis.
In particular, we found that miR-329 and CD146 are involved in
the regulation of VEGF-mediated SKF activation, a point not ad-
dressed previously. In addition, although miR-329 had no effect
on TNF-�-activated NF-�B signaling, miR-329 could signifi-
cantly suppress TNF-�-induced angiogenesis, which was rescued
by CD146 restoration. One of the possible explanations for this
phenomenon is that CD146 is an endothelial adhesion molecule,
which is located in the endothelial cell junctions, where it mediates
endothelial cell adhesion (13, 43). Thus, inhibition of angiogene-
sis by miR-329 may result from the direct inhibition of the proan-
giogenic function of CD146. On the other hand, while our results
indicate that the antiangiogenic function of miR-329 was mainly
through targeting of CD146, it is likely that the actions of miR-329
reflect the combined regulation of multiple targets that modulate
angiogenesis. In our study, we noted that miR-329 indirectly im-
paired the expression of multiple angiogenic genes, suggesting a
global effect of miR-329 on growth factor signaling. Further sys-
tematic investigation should shed light on the exact nature of ad-
ditional targets regulated by miR-329.

Our study also revealed the potential role of miR-329 in path-
ological angiogenesis. Oxygen-induced retinopathy has long
served as a useful model for studying pathological angiogenesis
(36). Although recent studies reported the expression profiles of
many miRNAs in the normal retinas of mice, including miR-329,
its targets and function were unknown (44, 45). Moreover, only a
few miRNAs have been identified to regulate OIR (46, 47). Here,
we provide the first evidence that endogenous miR-329 is de-
creased in OIR retinas compared with those of healthy eyes. Intra-
vitreal injection of miR-329 resulted in downregulation of CD146
expression and significantly dampened aberrant neovasculariza-
tion, thus alleviating the severity of OIR disease. These findings
suggest that treatment with miR-329 could provide a potential
therapeutic approach to curing this disease.

In addition, OIR replicates several key features not only of
tumor angiogenesis but also of inflammation and diabetic reti-
nopathy. Because angiogenic signaling is a common feature in

FIG 7 A schematic model for the function of miR-329 in angiogenesis. Bind-
ing of VEGF to VEGFR-2 activates NF-�B signaling, resulting in the down-
regulation of miR-329 in endothelial cells. The decreased miR-329 expression
causes an increase in levels of CD146, a proangiogenic effector and a corecep-
tor for VEGFR-2. Thus, miR-329 functions as an angiogenesis suppressor by
targeting CD146.
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neovascularization, we propose that miR-329 could play a com-
mon regulatory role in other pathological processes. We are cur-
rently investigating the role of miR-329 in tumor-related angio-
genesis, and initial data seem to suggest that miR-329 can also
regulate CD146 expression in endothelial cells cultured with tu-
mor cell-conditioned medium. Thus, our findings will have im-
plications that extend beyond our OIR model and should be of
great relevance for other angiogenesis disorders as well.

In comparison to siRNA therapy, endogenous microRNA thera-
peutics provide a natural means of manipulating disease genes, po-
tentially avoiding issues related to immune responses or drug resis-
tance (48, 49). The ability of miRNAs to regulate a broad range of
genes may make them a suitable pleiotropic tool for disease treat-
ment. It has been shown that miR-23 and miR-27 enhance angiogen-
esis by targeting antiangiogenic genes, such as those coding for
SPROUTY2 and SEMA6A, while inhibition of these miRNAs exhib-
its a promising therapeutic effect for choroidal neovascularization
(50). It is therefore of particular interest to determine if miR-329 can
regulate additional gene targets in angiogenesis.

Taken together, our findings provide novel insights into the
regulatory mechanisms of CD146 at the posttranscriptional level
in angiogenesis. Importantly, treatment with miR-329 may pro-
vide a potential therapeutic avenue for the treatment of vascular
system-related diseases.
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