








suggesting that the CNCI method has robust strength
(Supplementary Figure S7). Next, we applied the learned
regularities to classify objects in a test set, which was col-
lected from mouse protein-coding and non-coding tran-
scripts. We found that the minimum average error
(MAE) (the cutoff that minimizes the average false-
positive and false-negative rates) was 0.05 after the exam-
ination of the receiver operating characteristic (ROC)
curve (Figure 2b). The result showed that CNCI worked
reasonably well on mouse data, although CNCI was
trained on human sequences. Moreover, we also

compared the performance of CNCI with that of other
available tools by re-analyzing the test data set using
CPC and phyloCSF. The ROC curves showed that MAE
of CNCI was lower than that of other two methods (MAE
was 0.11 and 0.28 for CPC and phyloCSF, respectively),
indicating that CNCI is a better tool (Figure 2b). In
addition, we further tested CNCI as well as CPC and
phyloCSF, on an independent long intergenic non-coding
RNA data set from human body map lincRNAs catalog
(11). After removing the overlapping transcripts with
training set, we examined their performance across

Figure 2. CNCI performance. (a) The top panel shows ANT score distribution (the left y-axis) of these six reading frames for each protein-coding
transcript, whose length is normalized to 1100 nucleotide triplets in the x-axis. Red line represents the correct transcriptional reading frame and other
five lines (blue or green) represent other five reading frames. Green line indicates the distribution of the coverage (the right y-axis) of the MLCDS
region for each protein-coding transcript across the normalized length. The three regions marked by blue, yellow and green indicate the mean length
of 30UTR (6%), CDS (56.6%) and 50UTR (37.4%), respectively, across the normalized length. The bottom panel shows an example of a gene
NM_021222. (b) The ROC analyses of CNCI, CPC and phyloCSF. The MAE denoted by solid squares is 0.05, 0.11 and 0.28, respectively. (c) The
accuracy of CNCI, CPC and phyloCSF for classification of different lincRNA lengths. (d) The ROC curves and taxonomic tree of 12 species. The
minimum error rate is marked following the name of species.
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different lengths of transcripts, and found that CNCI
had better performance on all non-coding transcripts
with various lengths, whereas CPC and phyloCSF had
poor performance on transcripts with longer sequences
(Figure 2c).
Because both the reference and the reconstructed tran-

scripts in RNA-Seq experiments may be incomplete, we
modified known gene annotation by trimming the exon at
30- or 50-end of each transcript to generate a modified
transcript data set (to mimic the incomplete RNA-Seq
data) and re-evaluated CNCI performance in these incom-
plete transcripts. There were 28.3 and 45.2% of known
protein-coding transcripts with a complete CDS after
trimming the 50 and 30 exon, respectively (Supplementary
Table S4). CNCI maintained its high accuracy in the
modified transcript data sets with a mean accuracy of
97.9 and 97.7%, respectively, which was higher than that
of CPC (87.1 and 87.9%, respectively) and phyloCSF
(82.0 and 82.3%, respectively) (Supplementary Table
S5). To address whether CNCI is effective for sense–anti-
sense pairs, we evaluated its performance on antisense
lncRNAs and their protein-coding counterparts, as well
as on coding–coding pairs and non-coding–non-coding
pairs. The results showed that the mean classification
accuracy was 98% for coding–non-coding pairs, 87%
for coding–coding pairs and 97% for non-coding–non-
coding pairs, which was higher than that of CPC (95, 82
and 97%, respectively) and phyloCSF (63, 91 and 55%,
respectively) (Supplementary Table S6, Supplementary
Figure S8). These results demonstrated that CNCI tool
is not only useful for classifying incomplete transcripts
from RNA-Seq data but also has good performance of
classifying sense–antisense transcript pairs.

Application of CNCI to gene sets of multiple species and
RNA-Seq data of poorly annotated species

Because gene annotation in multiple species (such as ver-
tebrates, invertebrates and plants) has been partially
completed by the Ensembl project (16), we tested CNCI
on a series of species based on taxonomy. Interestingly, we
found that using human data as training sets, CNCI per-
formed well uniformly on all the species of the vertebrates
(all MAE< 0.1), but relatively poorly on invertebrates and
plants (MAE is 0.18 and 0.24, respectively) (Figure 2d).
Although the accuracy and integrity of the known gene
annotation varied across different species (i.e. human,
mouse, Caenorhabditis elegans and Arabidopsis thaliana
have higher quality of gene annotation than others), the
distinct features of protein-coding and non-coding se-
quences between vertebrates, invertebrates and plants
were obvious (Figure 2d). These results demonstrated
that it is necessary to use invertebrates and plants as the
training data to classify transcript sequences of the
corresponding species, respectively. Our findings on the
sequence characteristics may reflect changes in evolution-
ary trends of genes between species. Because RNA-Seq
experiments have been carried out for many, although
not well-studied, species,we tested CNCI performance on
a published RNA-Seq data set from six organs of
orangutan (3). Using the integrative approach to

comprehensively reconstruct transcripts (11,17), we
identified 110 154 expressed multiexonic transcripts, of
which 88 563 (80%) had been annotated by Ensembl
database, and 20 414 known genes, of which 13 678 cor-
responded to 67% known protein-coding genes. CNCI
annotated 7697 novel transcripts as lncRNAs, including
631 intronic, 6029 intergenic and 1037 antisense RNAs
that contributed to the orangutan lncRNA catalog
(Supplementary data set 1). This can be applied to other
species irrespective of the current annotation status.

DISCUSSION

A large number of lncRNAs have been identified,
facilitated by the rapid progress of high-throughput
sequencing technology (11,18). Previous studies have
demonstrated that lncRNAs are involved in diverse
cellular processes, such as cell differentiation, imprinting
control, immune responses, and a growing number of
lncRNAs have been found to be implicated in disease
etiology (19–21). However, for most species, it remains a
challenge to identify lncRNAs from protein-coding genes
because of the lack of necessary information such as whole-
genome sequence, known protein database or conservative
regions. Therefore, it is important to develop a method in-
dependent of known annotations to de novo classify
lncRNAs and protein-coding genes. In this study, we
found a powerful signature, the profile of the pairs of
ANTs, which effectively distinguishes protein-coding or
non-coding sequence regardless of species. Our finding
was consistent with observations that the CDS regions
have been under a variety of competing selection pressures,
especially the translation optimization force that is
associated with the juxtaposition of tRNAs but not
required for non-coding regions (22). It is worth mention-
ing that a previous study used the length of the longest
region in the transcript without stop codons to effectively
discriminate the coding and non-coding sequences (23).
This so-called stop-best feature was included in the ANT
score matrix of our method. Similarly, a recent study
demonstrated that the hexamer usage bias is a powerful
indicator in the assessment of the protein-coding status of
a sequence because of the sequence composition constraints
introduced in the coding sequences by the genetic code (24).
In addition, a gene finding program, GENSCAN, uses a
homogeneous fifth-order Markov model for non-coding
regions and an inhomogeneous fifth-order Markov model
for coding regions of transcripts (25).

Although CNCI would be effective for classifying in-
complete transcripts assembled from RNA-Seq data in
most cases, caution should be taken in some cases. In
mammalian genomes, at least 30 exons of protein-coding
transcripts may not extend significantly into the coding
regions of transcripts. Instead, they may extend for
several kilo base away, and occur abundantly in most of
the RNA-Seq libraries, and thus are deemed as independ-
ent transcript units by most assembly tools. In such cases,
CNCI may misclassify these 30 (or 50) partial sequences
as non-coding RNAs; however, this misclassification is
not because of the classification method per se, but the
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accuracy of the used assembly method. Therefore, the
accurate query sets containing high-quality assembled
transcripts are requisite to achieve optimal performance
of CNCI.

CNCI is particularly well suited to the transcriptome
analysis of the not well-studied species because it can ef-
fectively classify transcripts solely based on nucleotide
composition of their sequence. The length of sequences
we adopted in this work is >200 nt, and thus, theoretic-
ally, any sequence >200 bp can be analyzed using our
proposed method. Our method differs from the previous
methods that depend on information of known genome
annotation or sequence conservation (4,5). Therefore,
CNCI has a key advantage over other methods because
genome sequences have been well annotated or completely
sequenced only for limited species so far, and for most
species, only partial or even none of their whole-genome
sequences have been known. For these large number of
species with poorly annotated sequences, it is hard to
use peptide hits or multispecies alignments to classify
sequences into protein-coding or non-coding transcripts,
as different ORF cutoffs may lead to a high false-negative/
positive rate, especially for lncRNAs (7). Although
sequence search approaches for the discrimination
between protein-coding and non-coding transcripts have
been available (26), there is still lack of effective de novo
approach to achieve it. Thus, CNCI is a useful tool, not
only for predicting protein-coding or non-coding
sequences for high-throughput sequencing data of
numerous species but also for analyzing the sequence
features across species as a way to gain insights into the
evolution.
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